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Abstract

The aim of this work is to present a technique for the optimization of emergency
vehicles travel times on assigned paths when critical situations, such as car accidents,
occur. Using a fluid-dynamic model for the description of car density evolution, the
attention is focused on a decentralized approach reducing to simple junctions with
two incoming roads and two outgoing ones (junctions of 2 × 2 type). We assume
the redirection of cars at junctions is possible and choose a cost functional, that
describes the asymptotic average velocity of emergency vehicles. Fixing an incoming
and an outgoing road for the emergency vehicle, we determine the local distribution
coefficients which maximize such functional at a single junction. Then we use the
local optimal coefficients at each node of the network. The overall traffic evolution
is studied via simulations, both for simple junctions or cascade networks, evaluating
global performances when optimal parameters on the network are used.

1 Introduction

The exponentially increasing number of circulating cars in modern cities renders the prob-
lem of traffic control of paramount importance. Incidents (such as accidents or even a
single car braking heavily in a previously smooth flow) may cause ripple effects (a cas-
cading failure) which then spread out and create a sustained traffic jam. In particular,
sudden decisions have to be taken in the case of emergency situations. Fire, police, am-
bulance, repair crews, emergency and life-saving equipment, services and supplies must
move quickly to where the greatest need is.
The problem can be solved with the identification of a network of dedicated municipal
and provincial roads. Otherwise, one may choose a route for emergency vehicles (not ded-
icated, i.e not limited only to emergency needs) and redistributing traffic flows at junctions
on the basis of the current traffic load in such way that emergency vehicles can travel at
the maximum allowed speed along the assigned roads (and without blocking the traffic on
other roads). In this paper we focus on this second approach. In Figure 1 white arrows
indicate the chosen path for the emergency vehicle; congested roads are marked in black.
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Figure 1: Car accident on a road network and flows redistribution.

With this aim in mind, we choose a fluid-dynamic model for road networks ([5], [8])
to find the optimal distribution of vehicles at junctions consisting of two incoming roads
and two outgoing ones in order to maximize the velocity of the emergency vehicles on an
assigned path. In reality, such coefficients are determined by drivers habits. However,
drivers preferences can be changed in presence of critical conditions in order to maximize
the velocity of emergency vehicles on assigned paths.

Following the adopted model, the car densities evolution is described by a conservation
law ([1]). In order to uniquely solve the dynamics at junctions, Riemann Problems (Cauchy
problems with constant initial data on each road) are solved respecting the following rules:

(A) the incoming traffic at a node is distributed to outgoing roads according to some
distribution coefficients;

(B) drivers behave so as to maximize the flux through the junction.

If the road junction is of 2×2 type, namely it has two incoming roads, a and b, and two
outgoing ones, c and d, rule (A) is expressed by two coefficients, α and β, that indicate
the percentage of cars moving from roads a and b, respectively, to road c. Assigning the
initial density for all incoming and outgoing roads of a node, we compute the asymptotic
equilibrium as function of α and β. Such equilibrium, belonging to the admissible region
for final fluxes, is chosen according to rule (B).

Some optimization problems for coefficients of fluid dynamic models have been already
treated for car traffic in ([3], [4]), where three cost functionals, J1, J2 and J3, indicating,
respectively, cars average velocities, average travelling times and flux, have been intro-
duced. For junctions of type 2× 1 and 1× 2, the optimization has been done over right of
way parameters and traffic distribution coefficients with the aim of maximizing J1 and J3,
and minimizing J2. Moreover, in [6], for junctions of 2× 1 type, further cost functionals,
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measuring kinetic energy and average travelling time, weighted with the number of cars
moving on the roads, have been considered. It was shown that only the velocity cost
functional guarantees optimal global performances on urban networks.

The goal of this paper is to extend this previous work to the case of 2×2 junctions. Here
assuming that emergency vehicles will cross fixed roads ϕ and ψ (ϕ ∈ {a, b} , ψ ∈ {c, d}),
a cost functional Wϕ,ψ, measuring the average velocities of such vehicles on the incoming
road Iϕ and the outgoing road Iψ of 2 × 2 junctions, is considered. The optimization
results give the values of α and β which maximize the functional, allowing a fast transit
of emergency vehicles to reach car accidents places and hospitals.

The analysis of the complete functional Wϕ,ψ on a whole network is a very complex
problem, hence we follow a decentralized approach. More precisely, we look at the asymp-
totic behaviour, i.e. for large times, at a single junction. It results possible to find an exact
solution for a single junction and an asymptotic expression of Wϕ,ψ. Then we propose a
global (sub)optimal solution for the whole network, simply obtained by applying at each
junction the computed local optimal solution.

The correctness of analytical optimization procedures is tested by simulations. For
numerics, we refer to approximation methods described in [2], [10], [11], [13]. Simulations
are run using two different choices of the distribution coefficients: (locally) optimal and
random. The first choice is given by the optimization algorithm; the second one considers,
at the beginning of the simulation process, a random choice of α and β, kept constant
during all the simulation. Simulation results first refer on simple junctions of 2× 2 type.
Then, we study the effects of the decentralized approach on the global performance of
a network with cascade junctions. It is shown that, for the chosen initial data, either
for simple junctions or networks, optimal parameters give better performances than other
ones.

The paper is organized as follows. In Section 2, we describe briefly the basic model for
road networks. In Section 3, we recall the construction of solutions to Riemann Problems
at junctions. Section 4 is devoted to the introduction of the cost functional Wϕ,ψ and its
optimization. Simulation results for simple junctions with different initial data and for a
cascade network are reported in Section 5. The paper ends with conclusions in Section 6.

2 Road networks

A road network is described by a couple (I,J ), where I represents the set of roads and J
is the collection of junctions. The roads are modelled by intervals [ai, bi] ⊂ R, i = 1, ..., N .

The evolution of car traffic on each road is described by the Lighthill-Whitham-
Richards model, given by the equation (see [14], [15]):

∂tρ+ ∂xf (ρ) = 0, (1)

where ρ = ρ (t, x) ∈ [0, ρmax] is the density of cars, ρmax is the maximal density, f (ρ) =
ρv (ρ) is the flux with v (ρ) the average velocity.

Setting ρmax = 1, we fix a velocity function,

v (ρ) = 1− ρ. (2)
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The corresponding flux function:

f (ρ) = ρ (1− ρ) , ρ ∈ [0, 1] , (3)

which presents a unique maximum σ = 1
2 , ensures the assumption (F):

(F) f : [0, ρmax]→ [0, σ] is a strictly concave C2 function such that f (0) = f (ρmax) = 0.

For a single conservation law (1) on a real line, a Riemann Problem (RP) is a Cauchy
problem for a piecewise constant initial data with only one discontinuity. In an analogous
way, we define a RP at a junction as a Cauchy problem with a constant initial datum for
each incoming and outgoing road. We aim to solve RPs at junctions of a road network.
Fix a junction J with n incoming roads Iϕ, ϕ = 1, ..., n, and m outgoing roads, Iψ,
ψ = n+ 1, ..., n+m, and an initial data ρ0 = (ρ1,0, ..., ρn,0, ρn+1,0, ..., ρn+m,0).

Definition 1 A Riemann Solver (RS) for the junction J is a map RS : [0, 1]n× [0, 1]m →
[0, 1]n× [0, 1]m that associates to Riemann data ρ0 = (ρϕ,0, ρψ,0) at J a vector ρ̂ = (ρ̂ϕ, ρ̂ψ)
so that the solution on an incoming road Iϕ, ϕ = 1, ..., n, is given by the wave (ρϕ,0, ρ̂ϕ)
and on an outgoing one Iψ, ψ = n+1, ..., n+m is given by the wave (ρ̂ψ, ρψ,0). We require
the following conditions to hold true:
(C1) RS (RS (ρ0)) = RS (ρ0) ;
(C2) on each incoming road Iϕ, ϕ = 1, ..., n, the wave (ρϕ,0, ρ̂ϕ) has negative speed, while
on each outgoing road Iψ, ψ = n+ 1, ..., n+m, the wave (ρ̂ψ, ρψ,0) has positive speed.

If m ≥ n, a possible RS at a junction J is defined according to the following rules (see
[5]):

(A) preferences of drivers at J are represented by some coefficients, collected in a traffic
distribution matrix A = (αψ,ϕ) , ϕ ∈ {1, ..., n} , ψ ∈ {n+ 1, ..., n+m}, 0 < αψ,ϕ < 1,∑n+m

ψ=n+1 αψ,ϕ = 1. The ψ−th column of A indicates the percentages of traffic that,
from the incoming road Iϕ, distribute to the outgoing roads;

(B) fulfilling (A), drivers maximize the flux through J .

The distribution coefficients αψ,ϕ represent average values of statistical travel prefer-
ences. The latter may well change depending on the hour of the day, thus rendering A
dependent on time. The case of time-varying coefficients was treated in [9], however here
we focus on the simpler case of fixed coefficients.
Rule (B) describes the situation in which drivers, travelling on incoming roads, optimize
the flow through the junction. Such assumption is reasonable but obviously may be not be
verified in practice because of the limitation in junction capacity and drivers’ choices. We
notice that the optimization of velocity gives rise to the same solver for simple junctions.
For a more deep discussion of the model and alternative ones we refer the reader to [7].

The condition (C2) of Definition 1 imposes restrictions on possible values that ρ̂ =
RS(ρ0) may attain. The following Proposition provides explicit expressions of sets where
ρ̂ may vary depending on the initial datum ρ0 (see [3], [5], [8] for details).
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Proposition 2 Assume that the flux function is given by (3) and let ρ̂ = RS(ρ0). Then
it holds:

ρ̂ϕ ∈
{
{ρϕ,0} ∪ ]τ (ρϕ,0) , 1] , if 0 ≤ ρϕ,0 ≤ 1

2 ,[
1
2 , 1
]
, if 1

2 ≤ ρϕ,0 ≤ 1,
ϕ = 1, ..., n,

and

ρ̂ψ ∈
{ [

0, 1
2

]
, if 0 ≤ ρψ,0 ≤ 1

2 ,
{ρψ,0} ∪ [0, τ (ρψ,0)[ , if 1

2 ≤ ρψ,0 ≤ 1,
ψ = n+ 1, ..., n+m,

where τ : [0, 1] → [0, 1] is the map such that f (τ (ρ)) = f (ρ) for every ρ ∈ [0, 1] , and
τ (ρ) 6= ρ for every ρ ∈ [0, 1] \ {σ} .

3 Choice of a Riemann Solver

We describe a Riemann Solver, that satisfies rules (A) and (B) for a junction of 2 × 2
type, i.e. with two incoming roads, a and b, and two outgoing roads, c and d. For such a
junction, the traffic distribution matrix A assumes the form:

A =

(
α β
1− α 1− β

)
,

where α is the probability that drivers go from road a to road c and β is the probability
that drivers travel from road b to road c. Let us suppose that α 6= β in order to fulfill a
technical condition for uniqueness of solutions, see [5] for details.

From Proposition 2, in order to obtain the solution on each road of the junction J , it
is enough to specify the flux values γ̂ϕ = f (ρ̂ϕ), ϕ = a, b, and γ̂ψ = f (ρ̂ψ), ψ = c, d. In
particular, from rule (A), it follows that:(

γ̂c
γ̂d

)
= A

(
γ̂a
γ̂b

)
.

From rule (B), we have that γ̂ϕ, ϕ = a, b, is found solving the linear programming problem:

max (γa + γb) ,
0 ≤ αγa + βγb ≤ γmax

c ,
0 ≤ (1− α) γa + (1− β) γb ≤ γmax

d ,
0 ≤ γϕ ≤ γmax

ϕ ,

(4)

where the maximum fluxes on roads are:

γmax
ϕ =

{
f (ρϕ,0) , if ρϕ,0 ∈

[
0, 1

2

]
,

f
(

1
2

)
, if ρϕ,0 ∈

]
1
2 , 1
]
,

ϕ = a, b, (5)

γmax
ψ =

{
f
(

1
2

)
, if ρψ,0 ∈

[
0, 1

2

]
,

f (ρψ,0) , if ρψ,0 ∈
]

1
2 , 1
]
,

ψ = c, d. (6)

The solution of (4) is found as follows. Introduce the function g (γ1, γ2, x, y) as:

g (γ1, γ2, x, y) =
γ1

x
− y

x
γ2.
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Define the lines
l1 =

{
(γa, γb) ∈ R2 : αγa + βγb = γmax

c

}
,

l2 =
{

(γa, γb) ∈ R2 : (1− α) γa + (1− β) γb = γmax
d

}
,

and set P = l1 ∩ l2 = (γ̃a, γ̃b). The fluxes γ̂a and γ̂b must belong to the region

Ω =
{

(γa, γb) ∈ R2 : 0 ≤ γa ≤ γmax
a , 0 ≤ γb ≤ γmax

b

}
,

thus if P belongs to Ω we set (γ̂a, γ̂b) = (γ̃a, γ̃b), otherwise (γ̂a, γ̂b) = projΩ (P ), where
proj is the projection on a convex set. Four different solution scenarios (SSs) are possible
for the problem (4), see Figure 2:

2
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a 

b 

1P

2P

P

b 

b 

a 

a 

P
max
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max
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max
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max

b 

max

b 

P
1P

2P

b 

a 

P
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a 

max

b 

P

4
SS3

SS

Figure 2: Different solution scenarios (SSs) for the problem (4).

The various SSs are fully described by the following conditions (A1)-(A12). More
precisely, (A1) corresponds to SS1 and (A2) to SS2, while (A3)-(A12) distinguish various
sub-cases for SS3 and SS4.

(A1) γ̃a < γmax
a , γ̃b < γmax

b , g (γmax
c , γmax

b , α, β) < g (γmax
d , γmax

b , 1− α, 1− β) < γmax
a ,

g (γmax
d , γmax

a , 1− β, 1− α) < g (γmax
c , γmax

a , β, α) < γmax
b ;

(A2) γ̃a ≥ γmax
a , γ̃b ≥ γmax

b ;

(A3) γ̃a < γmax
a , γ̃b > γmax

b , g (γmax
c , γmax

b , α, β) < γmax
a < g (γmax

d , γmax
b , 1− α, 1− β) ;
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(A4) γ̃a > γmax
a , γ̃b < γmax

b , g (γmax
c , γmax

a , β, α) < γmax
b < g (γmax

d , γmax
a , 1− β, 1− α) ;

(A5) γ̃a < γmax
a , γ̃b > γmax

b , g (γmax
d , γmax

b , 1− α, 1− β) < γmax
a < g (γmax

c , γmax
b , α, β) ;

(A6) γ̃a > γmax
a , γ̃b < γmax

b , g (γmax
d , γmax

a , 1− β, 1− α) < γmax
b < g (γmax

c , γmax
a , β, α) ;

(A7) γ̃a < γmax
a , γ̃b > γmax

b , g (γmax
c , γmax

b , α, β) < g (γmax
d , γmax

b , 1− α, 1− β) < γmax
a ;

(A8) γ̃a > γmax
a , γ̃b < γmax

b , g (γmax
c , γmax

a , β, α) < g (γmax
d , γmax

a , 1− β, 1− α) < γmax
b ;

(A9) γ̃a < γmax
a , γ̃b > γmax

b , γmax
a > g (γmax

c , γmax
b , α, β) > g (γmax

d , γmax
b , 1− α, 1− β) ;

(A10) γ̃a > γmax
a , γ̃b < γmax

b , γmax
b > g (γmax

c , γmax
a , β, α) > g (γmax

d , γmax
a , 1− β, 1− α) ;

(A11) γ̃a < γmax
a , γ̃b > γmax

b , g (γmax
c , γmax

b , α, β) > γmax
a ,

g (γmax
d , γmax

b , 1− α, 1− β) > γmax
a ;

(A12) γ̃a > γmax
a , γ̃b < γmax

b , g (γmax
c , γmax

a , β, α) > γmax
b ,

g (γmax
d , γmax

a , 1− β, 1− α) > γmax
b .

The solutions γ̂a and γ̂b of the RP are the following:

• if A1 holds, then (γ̂a, γ̂b) = (γ̃a, γ̃b);

• if A2 or A11 or A12 hold, then (γ̂a, γ̂b) = (γmax
a , γmax

b );

• if A3 or A7 are satisfied, then (γ̂a, γ̂b) = (γ̌a, γ̌b), where

(γ̌a, γ̌b) =

{
(g (γmax

c , γmax
b , α, β) , γmax

b ) , if g (γmax
c , γmax

b , α, β) ≥ 0,(
0, γ

max
c
β

)
, otherwise;

• if A4 or A8 hold, then (γ̂a, γ̂b) = (γ̆a, γ̆b), where

(γ̆a, γ̆b) =

{
(γmax
a , g (γmax

c , γmax
a , β, α)) , if g (γmax

c , γmax
a , β, α) ≥ 0,(

γmax
c
α , 0

)
, otherwise;

• if A5 or A9 are satisfied, then (γ̂a, γ̂b) = (γ̄a, γ̄b), where

(γ̄a, γ̄b) =

{
(g (γmax

d , γmax
b , 1− α, 1− β) , γmax

b ) , if g (γmax
d , γmax

b , 1− α, 1− β) ≥ 0,(
0,

γmax
d

1−β

)
, otherwise;

• if A6 or A10 hold, then (γ̂a, γ̂b) = (̊γa, γ̊b), where

(̊γa, γ̊b) =

{
(γmax
a , g (γmax

d , γmax
a , 1− β, 1− α)) , if g (γmax

d , γmax
a , 1− β, 1− α) ≥ 0,(

γmax
d

1−α , 0
)
, otherwise.
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4 Optimization of distribution coefficients

Our aim is to find the values of traffic distribution parameters at a junction in order to
manage critical situations, such as car accidents. In this case, beside the ordinary cars
flows, other traffic sources, due to emergency vehicles, are present. More precisely, assume
that a car accident occurs on a road of an urban network and that some emergency vehicles
have to reach the position of the accident, or of a hospital.

We define a velocity function for such vehicles:

ω (ρ) = 1− δ + δv (ρ) , (7)

with 0 < δ < 1 and v (ρ) as in (2). Since ω (ρmax) = 1−δ > 0, it follows that the emergency
vehicles travel with a higher velocity with respect to cars. Notice that (7) coincides with
the velocity of the ordinary traffic for δ = 1.

Consider a junction J with n incoming roads and m outgoing roads. Fix an incoming
road Iϕ, ϕ = 1, ..., n, and an outgoing road Iψ, ψ = n+ 1, ..., n+m. Given an initial data
(ρϕ,0, ρψ,0), we define the cost functional Wϕ,ψ (t), which indicates the average velocity of
emergency vehicles crossing Iϕ and Iψ:

Wϕ,ψ (t) =

∫
Iϕ

ω (ρϕ (t, x)) dx+

∫
Iψ

ω (ρψ (t, x)) dx.

As maximizing Wϕ,ψ (t) with respect to the traffic distribution parameters αψ,ϕ is a huge
task, we find the solution of the optimization problem in the asymptotic regime, i.e. after
a long time has elapsed, using ρ̂ = (ρ̂ϕ, ρ̂ψ) as densities. So we fix a time horizon [0, T ]
and we formulate the problem in the following way:

(P) consider a junction J with n incoming roads and m outgoing roads, the traffic distri-
bution coefficients αψ,ϕ as controls and the functionalWϕ,ψ (t). We want to maximize
Wϕ,ψ (T ) for T sufficiently big.

In what follows, we focus the attention on a junction J of type 2×2, fixing an incoming
road Iϕ, ϕ = a, b, and an outgoing road Iψ, ψ = c, d. For T sufficiently big we have that:

Wϕ,ψ (T ) = ω (ρ̂ϕ) + ω (ρ̂ψ) = 2− δ − δ

2

(
sϕ

√
1− 4γ̂ϕ + sψ

√
1− 4γ̂ψ

)
, (8)

where sϕ and sψ are defined as:

sϕ =

{
+1, if ρϕ,0 ≥ 1

2 , or ρϕ,0 <
1
2 and γmax

ϕ > γ̂ϕ,

−1 if ρϕ,0 <
1
2 and γmax

ϕ = γ̂ϕ,

sψ =

{
+1, if ρψ,0 >

1
2 and γmax

ψ = γ̂ψ,

−1 if ρψ,0 ≤ 1
2 , or ρψ,0 >

1
2 and γmax

ψ > γ̂ψ.

Without loss of generality, choosing ϕ = a and ψ = c, we have that (8) becomes:

Wa,c (T ) = ω (ρ̂a) + ω (ρ̂c) = 2− δ − δ

2

(
sa
√

1− 4γ̂a + sc
√

1− 4γ̂c

)
. (9)
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Notice that γ̂a and γ̂c in (9) depend on traffic coefficients α and β, which have to be
determined in order to maximize the velocity of the emergency vehicles on roads a and c.

The cost functional Wa,c (T ) is optimized choosing the distribution coefficients accord-
ing to the following theorem.

Theorem 3 Consider a junction J with two incoming roads, a and b, and two outgoing
roads, c and d. For T sufficiently big, the values of α and β, which optimize the cost

functional Wa,c (T ), are αopt = 1 − γmax
d
γmax
a

, 0 ≤ βopt < 1 − γmax
d
γmax
a

, with the exception of
the following cases, where the optimal controls do not exist but the optimal values are
approximated by:

• αopt = ε1, βopt = ε2, if γmax
a ≤ γmax

d ;

• αopt = γmax
c

γmax
c +γmax

d
− ε1, βopt = γmax

c
γmax
c +γmax

d
− ε2, if γmax

a > γmax
c + γmax

d ,

for ε1 and ε2 small, positive and such that ε1 6= ε2.

Proof. For simplicity, from now on we drop the dependence on T from Wa,c. Fix a
junction J and an initial datum ρ0 = (ρa,0, ρb,0, ρc,0, ρd,0).

The proof is organized in the following several steps:

1. divide the rectangular region Λ =
{

(α, β) ∈ R2 : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1
}

into sub-
regions Λk ⊂ Λ, k = 1, ..., N , for which the solution to the RP obeys the same
Solution Scenario;

2. compute the explicit expression of Wa,c (α, β) for every Λk, k = 1, ..., N ;

3. compute (αk, βk) ∈ Λk ∀ Λk, k = 1, ..., N , such that Wa,c (αk, βk) = MΛk = max
(α,β)∈Λk

Wa,c (α, β);

4. find (αopt, βopt) ∈ Λ such thatMΛ = max
(α,β)∈Λ

Wa,c (α, β) = max {MΛ1 , MΛ2 , ..., MΛN }.

Notice that:

• N is at most equal to six, depending on the chosen ρ0 at J , namely: different initial
conditions ρ0 imply different subdivision of Λ in terms of number of regions;

• optimal values αopt and βopt are not always well defined due to strict inequalities
that define some subregions Λk.

We proceed now with the details of the proof. Denote by Γmax
in and Γmax

out the sum of
maximum fluxes on incoming and outgoing roads, respectively:

Γmax
in = γmax

a + γmax
b , Γmax

out = γmax
c + γmax

d .

In what follows, we make the following assumptions on initial data (for all the other cases,
the proof is similar):
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(H1) ρa,0 <
1
2 , ρc,0 >

1
2 ;

(H2) γmax
d < γmax

b < γmax
c < γmax

a < Γmax
out < Γmax

in .

Define the lines:

r =

{
(α, β) ∈ R2 : β =

γmax
c − αγmax

a

Γmax
out − γmax

a

}
,

s =

{
(α, β) ∈ R2 : β =

γmax
c − α(Γmax

out − γmax
b )

γmax
b

}
,

t =
{

(α, β) ∈ R2 : β = α
}
,

and the regions into which r, s, and t divide the plane (α, β):

r+ =

{
(α, β) ∈ R2 : β ≥ γmax

c − αγmax
a

Γmax
out − γmax

a

}
,

r− =

{
(α, β) ∈ R2 : β ≤ γmax

c − αγmax
a

Γmax
out − γmax

a

}
,

s+ =

{
(α, β) ∈ R2 : β ≥

γmax
c − α(Γmax

out − γmax
b )

γmax
b

}
,

s− =

{
(α, β) ∈ R2 : β ≤

γmax
c − α(Γmax

out − γmax
b )

γmax
b

}
,

t+ =
{

(α, β) ∈ R2 : β > α
}

, t− =
{

(α, β) ∈ R2 : β < α
}
.

The open set
Λ =

{
(α, β) ∈ R2 : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1

}
is decomposed as Λ =

5⋃
k=1

Λk, where:

Λ1 = Λ ∩ r+ ∩ t+, Λ2 = Λ ∩ s+ ∩ t−, Λ3 = Λ ∩
[(
r− ∩ s+ ∩ t+

)
∪
(
r+ ∩ s− ∩ t−

)]
,

Λ4 = Λ ∩ s− ∩ t+, Λ5 = Λ ∩ r− ∩ t−.

A unique RS is associated to each region Λm, m = 1, ..., 5, on the basis of conditions Aj,
j = 1, ..., 12. Precisely, we have that, given a couple (α, β):

• if (α, β) ∈ Λ1, A4 or A8 are satisfied;

• if (α, β) ∈ Λ2, A3 or A7 are satisfied;

• if (α, β) ∈ Λ3, A1 holds;

• if (α, β) ∈ Λ4, A5 or A9 are satisfied;

• if (α, β) ∈ Λ5, A6 or A10 hold.
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Hence, the cost functional Wa,c is written as:

Wa,c =



2− δ − δ
2

(
sa
√

1− 4γ̆a + sc
√

1− 4 (αγ̆a + βγ̆b)
)
, if (α, β) ∈ Λ1,

2− δ − δ
2

(√
1− 4

(
γmax
c −γmax

b β

α

)
+
√

1− 4γmax
c

)
, if (α, β) ∈ Λ2,

2− δ − δ
2

(√
1− 4γ̃a +

√
1− 4γmax

c

)
, if (α, β) ∈ Λ3,

2− δ − δ
2

(
sa
√

1− 4γ̄a + sc
√

1− 4 (αγ̄a + βγ̄b)
)
, if (α, β) ∈ Λ4,

2− δ − δ
2

(
sa
√

1− 4̊γa + sc
√

1− 4 (αγ̊a + βγ̊b)
)
, if (α, β) ∈ Λ5.

Notice that (H1) establishes the values of sa and sc and the functional Wa,c assumes
different expressions in regions Λ1,Λ4 and Λ5 as the values of (γ̆a, γ̆b), (γ̄a, γ̄b), and (̊γa, γ̊b)
depend, respectively, on the sign of g (γmax

c , γmax
a , β, α), g (γmax

d , γmax
b , 1− α, 1− β) and

g (γmax
d , γmax

a , 1− β, 1− α). In particular, we have that:

g (γmax
c , γmax

a , β, α) ≥ 0⇔ α ≤ γmax
c

γmax
a

,

g (γmax
d , γmax

b , 1− α, 1− β) ≥ 0⇔ β ≥ 1−
γmax
d

γmax
b

,

g (γmax
d , γmax

a , 1− β, 1− α) ≥ 0⇔ α ≥ 1−
γmax
d

γmax
a

.

Such inequalities allow further divisions of the regions Λi, i = 1, 4, 5, see Figure 3, where:

Α

Β

t
Α = 1

Β = 1

L1

L2

L3

L3

L4

L5 A L5 B

Α =
Γc

max

�����������������
Γa

max

Α = 1 -
Γd

max

������������������
Γa

max

Β = 1 -
Γd

max

������������������
Γb

max

O

F

AH

G
C

B

DE

r

s

Figure 3: Division of Λ in regions and sub-regions.
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O = (0, 0) , A =

(
γmax
c

γmax
a

, 0

)
, B = (1, 0) ,

C =

(
1, 1−

γmax
d

γmax
b

)
, D =

(
1−

γmax
d

γmax
a

, 1

)
, E =

(
γmax
b − γmax

c

γmax
b − Γmax

out

, 1

)
,

F =

(
γmax
c

Γmax
out

,
γmax
c

Γmax
out

)
, G =

(
1−

γmax
d

γmax
a

, 1−
γmax
d

γmax
a

)
, H =

(
1−

γmax
d

γmax
a

, 0

)
.

Consider the region Λ3. According to the RS the cost functional Wa,c is:

J (α, β) = 2− δ − δ

2

√
1− 4γmax

c − δ

2

√
α+ β (4Γmax

out − 1)− 4γmax
c

α− β
.

We have that:
∂J (α, β)

∂α
=

δ (βΓmax
out − γmax

c )

(α− β)2
√

α+β(4Γmax
out −1)−4γmax

c

α−β

,

∂J (α, β)

∂β
= − δ (αΓmax

out − γmax
c )

(α− β)2
√

α+β(4Γmax
out −1)−4γmax

c

α−β

,

and we conclude that there are no critical points inside Λ3 such that β 6= α.
Now, we study the behaviour of J (α, β) on boundaries. On segments DF ∪ AF and

EF ∪ CF , J (α, β) is constant and, in particular, its values are, respectively:

J

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
= 2− δ − δ

2

(√
1− 4γmax

a +
√

1− 4γmax
c

)
,

J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
= 2− δ − δ

2

(√
1− 4γmax

c +
√

1 + 4γmax
b − 4Γmax

out

)
.

On the segment DE, Wa,c is equal to:

J (α, 1) = 2− δ − δ

2

(√
1− 4γmax

c +

√
1− α− 4γmax

d

1− α

)
,

γmax
b − γmax

c

γmax
b − Γmax

out

≤ α ≤ 1−
γmax
d

γmax
a

.

Since

J ′ (α, 1) =
δγmax
d

(1− α)2
√

1−α−4γmax
d

1−α

> 0,

we conclude that Wa,c(E) < Wa,c (D). Hence, the maximum is given by the point D for
which

Wa,c (D) = 2− δ − δ

2

(√
1− 4γmax

a +
√

1− 4γmax
c

)
= J

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
.

As for the analysis on the segment BC, we get that Wa,c becomes:

J (1, β) = 2− δ− δ

2

(√
1− 4γmax

c +

√
1 + β (4Γmax

out − 1)− 4γmax
c

1− β

)
, 0 ≤ β ≤ 1−

γmax
d

γmax
b

,
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whose derivative is:

J ′ (1, β) = −
δγmax
d

(1− β)2
√

1+β(4Γmax
out −1)−4γmax

c

1−β

< 0.

Hence, Wa,c (C) < Wa,c (B) and the maximum point is attained in B with

Wa,c (E) = 2− δ(1 +
√

1− 4γmax
c ).

Finally, on the segment AB, Wa,c is equal to:

J (α, 0) = 2− δ − δ

2

(√
1− 4γmax

c +

√
1− 4

γmax
c

α

)
,

γmax
c

γmax
a

≤ α ≤ 1,

and

J ′ (α, 0) = − δγmax
c

α2

√
α−4γmax

c
α

< 0.

So, Wa,c (B) < Wa,c (A), and the maximum point is A with Wa,c (A) = Wa,c (D). Notice
that:

Wa,c (D) = Wa,c (A) > J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
⇔ Γmax

in > Γmax
out ,

J

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
> Wa,c (B)⇔ γmax

c < γmax
a ,

J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
< Wa,c (B)⇔ γmax

d < γmax
b ,

which satisfy (H2). Hence, we get that:

Wa,c (D) = Wa,c (A) > Wa,c (B) > J

(
α,
γmax
c − α(Γmax

out − γmax
b )

γmax
b

)
,

and the absolute maximum in Λ3 is achieved in all points of the set

Λ ∩ r ∩
{

(α, β) ∈ R2 : β 6= α
}
,

for which the value of the cost functional is:

MΛ3 = 2− δ − δ

2

(√
1− 4γmax

a +
√

1− 4γmax
c

)
.

Focus, now, the attention on Λ5. The line α = 1 − γmax
d
γmax
a

divides Λ5 into two subregions,
Λ5,− and Λ5,+, see Figure 3. Precisely:

Λ5,− = Λ5 ∩ u−, Λ5,+ = Λ5 ∩ u+,
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where

u+ =

{
(α, β) ∈ R2 : α ≥ 1−

γmax
d

γmax
a

}
, u− =

{
(α, β) ∈ R2 : α ≤ 1−

γmax
d

γmax
a

}
.

The cost functional Wa,c is given by:

Wa,c =

{
J1 (α) , if (α, β) ∈ Λ5,−,
J2 (α, β) , if (α, β) ∈ Λ5,+,

with:

J1 (α) = 2− δ +
δ

2

(√
1−

4αγmax
d

1− α
−
√

1−
4γmax

d

1− α

)
,

J2 (α, β) = 2− δ +
δ

2

√1− 4γmax
a α− β

(
1 + 4γmax

d − γmax
a

)
1− β

+
√

1− 4γmax
a

 .

We have that:

J ′1 (α) =
δγmax
d

(1− α)2

 1√
1− 4γmax

d
1−α

− 1√
1− 4αγmax

d
1−α

 ,

which does not vanish for any value of α. Moreover,

∂J2 (α, β)

∂α
= − δγmax

a

(1− β)

√
1−4γmax

a α−β(1+4γmax
d −γmax

a )
1−β

,

∂J2 (α, β)

∂β
= −

δ [γmax
d + γmax

a (1 + α)]

(1− β)2

√
1−4γmax

a α−β(1+4γmax
d −γmax

a )
1−β

,

and we get that there are not critical points inside Λ5,+.
Now, we study the behaviour of Wa,c on boundaries. First, we consider Λ5,−. Since

J ′1 (α) ≥ 0 for 0 ≤ α ≤ 1 − γmax
d
γmax
a

, the function J1 (α) is increasing with respect to α. It

follows that Wa,c (O) < Wa,c (G), and the maximum on the segment OG is attained in the
point G, where the functional assumes the value:

Wa,c (G) = 2− δ +
δ

2

(√
1− 4γmax

a + 4γmax
d −

√
1− 4γmax

a

)
.

Then, as Wa,c(O) < Wa,c (H), the velocity functional assumes the maximum value on the
segment OH in the point H and Wa,c(G) = Wa,c(H). Finally, on the segment GH, the
functional is constant and equal to:

J1

(
1−

γmax
d

γmax
a

)
= Wa,c(G).
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As Wa,c(G) = Wa,c(H) = J1

(
1− γmax

d
γmax
a

)
we conclude that, in Λ5,−, Wa,c assumes the

absolute maximum in all points of the segment GH, and the value of the cost functional
is:

MΛ5,− = 2− δ +
δ

2

(√
1− 4γmax

a + 4γmax
d −

√
1− 4γmax

a

)
.

Now, consider the subregion Λ5,+. On the segment AH, Wa,c is equal to:

J2 (α, 0) = 2− δ +
δ

2

(√
1− 4γmax

a +
√

1− 4αγmax
d

)
, 1−

γmax
d

γmax
a

≤ α ≤ γmax
c

γmax
a

,

whose derivative is:

J ′2 (α, 0) = − δγmax
a√

1− 4αγmax
d

< 0, 1−
γmax
d

γmax
a

≤ α ≤ γmax
c

γmax
a

.

Hence, Wa,c (A) < Wa,c (H), and the maximum is achieved in the point H, where we have
that

Wa,c (H) = 2− δ +
δ

2

(√
1− 4γmax

a +
√

1− 4γmax
a + 4γmax

d

)
.

The cost functional is constant on the segment GH, where it is given by:

J2

(
1−

γmax
d

γmax
a

, β

)
= Wa,c (H) , 0 ≤ β < 1−

γmax
d

γmax
a

.

As for the analysis of Wa,c on the segment FG, we have to consider the function:

J̃2 (α) = lim
β→α

J2 (α, β) = 2− δ +
δ

2

√1− 4γmax
a +

√
1− α(1 + 4γmax

d )

1− α

 ,

1− γmax
d
γmax
a
≤ α ≤ γmax

c
Γmax
out

. Since

J̃2
′
(α) = −

δγmax
d

(1− α)2
√

1− 4αγmax
d

1−α

< 0, 1−
γmax
d

γmax
a

≤ α ≤ γmax
c

Γmax
out

,

it follows that Wa,c (F ) < Wa,c (G), and the maximum is attained in the point G, where we
have that Wa,c (G) = Wa,c (H). Finally, on the segment AF , Wa,c is a constant function:

J2

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
= 2− δ +

δ

2

(√
1− 4γmax

a +
√

1− 4γmax
c

)
,

γmax
c

Γmax
out

≤ α ≤ γmax
c

γmax
a

.

Notice that

Wa,c(G) = Wa,c (H) = J2

(
1−

γmax
d

γmax
a

, β

)
> J2

(
α,
γmax
c − αγmax

a

Γmax
out − γmax

a

)
,

hence the absolute maximum in Λ5,+ is attained in all points of the segment GH, for
which the value of the cost functional is:

MΛ5,+ = 2− δ +
δ

2

(√
1− 4γmax

a +
√

1− 4γmax
a + 4γmax

d

)
.
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Finally, as MΛ5,+ > MΛ5,− , we get that the maximum in Λ5 is achieved in all points:(
1−

γmax
d

γmax
a

, β

)
, 0 ≤ β < 1−

γmax
d

γmax
a

,

and the value of the cost functional is MΛ5,+ .
In a similar way, we compute the absolute maxima in regions Λ1, Λ2 and Λ4. We

obtain that:

• the absolute maximum in Λ1 is represented by all points of the set

Λ1 ∩
{

(α, β) ∈ R2 : α ≤ γmax
c

γmax
a

}
,

and the corresponding value of the cost functional is

MΛ1 = 2− δ +
δ

2

√
1− 4γmax

a − δ

2

√
1− 4γmax

c ;

• the absolute maximum in Λ2 is given by all points of the set Λ ∩ s ∩ t−, and the
value of Wa,c is

MΛ2 = 2− δ − δ

2

√
1− 4γmax

c − δ

2

√
1 + 4γmax

b − 4γmax
c − 4γmax

d ;

• the absolute maximum in Λ4 is attained in the point O, and the value of the cost
functional is MΛ4 = 2− δ.

Since
MΛ5 > MΛ4 > MΛ1 > MΛ3 > MΛ2 ,

the values of α and β that optimize Wa,c in Λ are the same of those which maximize the
cost functional in Λ5. This concludes the proof.

5 Simulations

In this section, we present some simulation results in order to test the optimization algo-
rithm for the cost functional Wa,c both for single junctions or networks. In particular, we
analyze the effects of different control procedures, applied locally at each junction, on the
global performances of networks.

5.1 Single junctions

We consider single junctions of 2×2 type. Again the incoming roads are labelled with a and
b, and the outgoing ones with c and d. We compare the cost functional behaviour using:
random coefficients (random case), i.e. parameters taken randomly when the simulation
starts and then kept constant; optimal distribution coefficients (optimal case).

We analyze three different situations, denoted by A, B and C, with initial data reported
in Table 1, and chosen in such way to test all possible optimal solutions reported in
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ρa,0 ρb,0 ρc,0 ρd,0
Case A 0.15 0.6 0.8 0.9

Case B 0.15 0.6 0.9 0.8

Case C 0.25 0.1 0.85 0.95

Table 1: Initial conditions for the three simulation cases.

Theorem 3. Boundary data are assumed equal to initial conditions. Initial densities on
outgoing roads c and d are chosen very high (close to ρmax = 1) to test how optimal
choices of distribution parameters can create a decongestion effect in critical condition for
the network.

Indicating by αopt and βopt the values of optimal distribution coefficients α and β, we
have that: for case A, αopt = 0.294118 and 0 ≤ βopt < αopt (we choose βopt equal to 0.2);
for case B, αopt = ε1, βopt = ε2; for case C, αopt = 0.708571 + ε1, βopt = 0.708571 + ε2

with ε1 and ε2 small, positive and such that ε1 6= ε2.
The traffic evolution is simulated using the Godunov scheme with space step ∆x =

0.0125, time step ∆t satisfying the CFL condition (see [11]), and the flux function (3) in
a time interval [0, T ], where T is 30 min for cases A and B and 100 min for the case C.

Figures 4 - 6 sketch Wa,c (t) and the 3D behaviour of Wa,c (T ) in cases A, B and C,
respectively, with δ = 0.5. We notice that the optimal simulations, in accordance to the
theoretical results of Theorem 3, are always the highest, indicating that optimal param-
eters allow to maximize the velocity of emergency vehicles with respect to the random
cases. This is also confirmed by 3D plots of Wa,c (T ) in the plane (α, β): the maximum
values are in accordance to those ones obtained analytically.

Indeed, some random simulations approaches the optimal one. This occurs when values
of α and β are such that the ordinary traffic does not fill the outgoing road c, that interests
the paths of emergency vehicles. In particular, for cases A and B, random choices of
parameters α = 0.26, β = 0.85, and α = 0.81, β = 0.58, respectively, assure the lowest
behaviours of Wa,c (T ): the values of β indicate that a high amount of ordinary traffic
crosses the outgoing road c, coming from the incoming road b, with consequent difficulties
for emergency vehicles to reach the final destination. For case C, a similar phenomenon
happens for α = 0.93 and β = 0.28, since the greatest percentage of traffic crossing the
outgoing road c is due to road a, which has a higher initial data with respect to the
incoming road b. Figures 7 and 8 show the behaviour of the functional Wa,c(t) with
optimal α and β parameters in cases A, B and C for various values of δ. The continuous
line refers to the case δ = 0.5, used during all simulations. When δ increases, Wa,c(t)
decreases. In particular, notice that, when δ = 0, Wa,c(t) assumes the maximal value and
is trivially constant; when δ = 1, Wa,c(t) is influenced only by the ordinary car traffic and
achieves the lowest value. Finally, Figure 11 (right) shows the behaviour of the optimal
asymptotic value Wa,c(T ) versus δ. Unlike cases A and B, the asymptotic value Wa,c(T )
in case C is strongly influenced by the choice of δ.
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Figure 4: Case A, evolution of Wa,c(t); left: choice of optimal distribution coefficients
(continuous line) and random parameters (dashed lines); right: 3D plots of Wa,c (T ).
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Figure 5: Case B, evolution of Wa,c(t); left: choice of optimal distribution coefficients
(continuous line) and random parameters (dashed lines); right: 3D plots of Wa,c (T ).
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Figure 6: Case C, evolution of Wa,c(t); left: choice of optimal distribution coefficients
(continuous line) and random parameters (dashed lines); right: 3D plots of Wa,c (T ).
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Figure 7: Evolution of the optimal behaviour of Wa,c(t) in cases A (left) and B (right),
computed for different values of δ.

20 40 60 80 100

t HminL

0.5

1

1.5

2

Wa,cHtL

0.2 0.4 0.6 0.8 1

∆

1.2

1.4

1.6

1.8

2

2.2

Wa,cHTL

Figure 8: Left: evolution of the optimal behaviour of Wa,c(t) in case C, computed for
different values of δ. Right: Wa,c(T ) vs. δ in cases A (dot dashed line), B (continuous
line) and C (dashed line).

19



5.2 A network with cascade junctions

This subsection is devoted to a cascade junction network consisting of consecutive junc-
tions. The aim is to understand the effects of the “local type” optimal algorithm on the
whole network.

The topology of the network, see Figure 9, is described by ten roads, divided into two
subsets, R1 = {a, d, e, g, h, l} and R2 = {b, c, f, i} that are, respectively, the set of inner
and external roads. All junctions are of 2 × 2 type and labelled by numbers 1, 2, and 3.
Assuming that the emergency vehicles have an assigned path, we analyze the behaviour

a

b c

d

e

g

f

h

i

l

1 2 3

Figure 9: Topology of the cascade junction network.

of the functional:

W (t) = Wac(t) +Wef (t) +Whi(t).

The evolution of traffic flows is simulated using the Godunov scheme with ∆x = 0.0125,
and ∆t = ∆x

2 in a time interval [0, T ], where T = 100 min. Initial conditions and boundary
data for densities are in Table 2:

Road Initial condition Boundary data

a 0.1 0.1

b 0.65 0.65

c 0.75 /

d 0.95 0.95

e 0.2 0.2

f 0.65 /

g 0.95 0.95

h 0.25 0.25

i 0.55 0.55

l 0.95 0.95

Table 2: Initial conditions and boundary data for roads of the cascade junction network.
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Also in this case, initial and boundary data are chosen in order to simulate a network
with critical conditions on some roads, as congestions due to the presence of accidents.
We consider again two different type of simulation cases: (locally) optimal distribution
coefficients applied at each node (optimal case); a random case, whose characteristics have
already been explained in previous subsection.

Figure 10 shows the temporal behaviour of W (t) measured on the whole network. As
we can see, the optimal cost functional is higher than the random ones, hence the principal
aim is achieved for the chosen data set. Notice that, in general, optimal global perfor-
mances on networks could also not be achieved, as the traffic state is strictly dependent
on initial and boundary data. In Figure 11, we show the simulation of W (t) for different
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Figure 10: Evolution of W (t) for optimal choices (continuous line) and random parameters
(dashed line); left: behaviour in [0, T ]; right: zoom around the asymptotic values.

values of δ and optimal values parameters at junctions. The behaviour is exactly the same
as for single junctions, hence δ = 0 corresponds to the highest curve and δ = 1 to the
lowest one. Notice that the continuous line corresponds to the case δ = 0.5. Moreover,
there are not meaningful changes of the asymptotic value W (T ) when δ varies.
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Figure 11: Left: evolution of the optimal behaviour of W (t), computed for different values
of δ. Right: W (T ) vs. δ.
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6 Conclusions

In this paper, an optimization technique is presented for the maximization of the velocity
of emergency vehicles on assigned paths, when emergency situations occur.

The optimization is made over traffic distributions coefficients at junctions, considered
fixed, using a cost functional that describes the average velocity of emergency vehicles.
An exact analytical solution is found for simple junctions with two incoming roads and
two outgoing ones, in steady state, i.e. after a long time has passed.

Then, a sub-optimal strategy, consisting in using the local optimal coefficients at every
junction, is tested through simulations. In particular, for a cascade network, it is shown
that such strategy is outperforming random choices.

Future investigations may encompass the following extensions:

• The case treated in this paper refers to fixed traffic distribution coefficient. In reality
such coefficients may vary during the day and for this case an existence theory is
already available, see [9].

• Beside redirecting traffic, a stronger measure is the closure of roads. This is modelled
by a problem in which the network topology varies.

• The present approach is focused on optimizing a single junction. Even if the op-
timization of a whole network may be out of reach, the selection of a simple path
could be addressed.
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