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Abstract

Numerical techniques for the simulation of an ODE-PDE model for supply chains
are presented. First we describe a scheme, based on Upwind and explicit Euler meth-
ods, provide corrections to maintain positivity of solutions, prove convergence and
provide convergence rate. The latter is achieved via comparison with Wave Front
Tracking solutions and the use of generalized tangent vectors. Different choice of time
and space meshes give similar results, both for CPU times and numerical errors. Fast
algorithms, based on an accurate choice of time and space meshes and data structures,
are then proposed, achieving high computational gains.

1 Introduction

In last years, scientific communities showed a great interest in modelling dynamics of
industrial productions, managed by supply chains. This study is fundamental in order to
reduce some unwished phenomena (bottlenecks, dead times, and so on).

Several mathematical approaches have been proposed. For example, some models are
discrete and based on considerations of individual parts (for a review, see [10]). Other
models are continuous ([1, 2, 3, 24]), and some based on partial differential equations. The
first paper in this last direction was [1], where the authors, via a limit procedure on the
number of parts and suppliers, have obtained a conservation law formulation. The flux
involves parts density and the maximal productive capacity. The main problem is that
solutions for discontinuous productive capacity functions may exhibit delta waves. For
this reason, alternative models were proposed. For instance, a mixed continuum-discrete
model is given in [11]: The supply chain is described by continuous arcs and discrete
nodes. Also extensions on networks have been made ([12, 13, 14]).

In this paper, we focus the attention on the continuous model for supply chains and
networks proposed by Göttlich, Herty and Klar in [17]. Our main aim is to analyze the
convergence of the Upwind-Euler scheme and improve its performance by accurate choice
of discretization parameters. Examples of schemes for conservation laws on networks can
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be found in [6, 17, 20]. The necessity of having fast numerics is justified by optimization
problems which arise naturally in applications, see [18, 22].
The model of [17] is obtained considering suppliers on which the processing rate is constant
(thus avoiding the problem of delta waves) and having queues in front of each supplier.
The evolution of the queue buffer occupancy is given by the difference of fluxes from the
preceding and following suppliers. The outcome is a coupled ODE-PDE model.
Two numerical schemes must be considered: One for the ODE and one for the PDE. We
choose the Upwind method for parts densities, described by conservation laws (PDEs),
and the explicit Euler scheme for queue evolutions, modelled by ODEs. For details, see
also [16] and [23].

Notice that the ODE-PDE model guarantees positivity of queue buffer occupancies
(and densities), while this is not granted for the Upwind-Euler scheme. Thus first we
consider fluxes corrections to avoid this drawback.
The choice of time and space meshes can be uniform over suppliers only in case of rational
ratios among lengths. Thus we consider different discretizations of the Upwind-Euler to
deal with the general case and also to reduce computational complexity.
Convergence of the scheme is proved using a comparison with Wave Front Tracking ap-
proximate solutions. More precisely, we consider nesting grids in which meshes are divided
by two in successive approximations. Then generalized tangent vectors, as in [21], are de-
fined and the evolution of their norms permits to bound L1 distances of solutions. Finally,
a linear convergence rate is achieved in terms of the space (or time) mesh. A similar
technique was used in [8] to prove convergence for an ODE-PDE (not completely coupled)
model to track the trajectory of a car on a road network.

From several simulations of supply chains, it is evident that heavy numerical errors
occur if corrections for negative queues are not adopted. Moreover, different time-space
discretizations for the Upwind-Euler method perform similarly, both in terms of CPU
times and numerical errors.
Focusing on the last point, computational gains are obtained by the use of logic pointers
to update the computed density values. This allows a strong reduction of computational
complexity as shown by simulation of relatively large supply chains (10 and 100 arcs), for
which CPU times reduce of up to 90%.

The outline of the paper is the following. In Section 2, we present the ODE-PDE
model. Then Section 3 describes the Upwind-Euler scheme, while its convergence is proven
in Section 4, shifting to the Appendix the description of generalized tangent vectors.
Section 5 reports tests showing the importance of positivity of solutions. Reduction of
computational complexity is addressed in Section 6 and the relative numerical tests are
described in Section 7.

2 A model for supply chains

In this section, we present an ODE-PDE model for supply chains first proposed in [17],
and based on the work [1]. Beside the conservation laws formulation proposed in [1], such
model includes time - dependent queues describing the transition of parts among suppliers.

A supply chain is a directed graph consisting of arcs J = {1, ..., N} and vertices
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V = {1, ..., N − 1}. Each arc j ∈ J , parameterized by an interval [aj , bj ], models a supplier.
Each vertex is connected to one incoming arc and one outgoing arc and we assume that
arcs are consecutively labelled, i.e. arc j is connected to arc j+1 and bj = aj+1 (see Figure
1). For the first and the last arc, we either set a1 = −∞ and bN = +∞, respectively, or
provide boundary data for the inflow and outflow.
Each supplier j has a queue in front of itself, i.e. at x = aj , and is characterized by a

1
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Figure 1: an example of supply chain.

maximum processing capacity µj > 0, length Lj > 0 and a processing time Tj > 0. The
rate Lj/Tj represents the processing velocity. Indicating by ρj (t, x) the density of parts in
the supplier j at point x and time t, the evolution of parts is described by a conservation
law:

∂tρj (t, x) + ∂xfj (ρj (t, x)) = 0, ∀ x ∈ [aj , bj ] , t > 0, (1)

where the flux function fj (ρj (t, x)) is given by:

fj : [0, +∞[ → [0, µj ] , fj (ρj (t, x)) = min
{

µj ,
Lj

Tj
ρj(t, x)

}
.

The interpretation of equation (1) is the following: Parts are processed with velocity Lj/Tj

but with a maximal flux µj .
Each queue buffer occupancy is a time dependent function t → qj (t). If the capacity of
the supplier j − 1 and the demand of the supplier j are not equal, the queue increases or
decreases its buffer. More precisely, we have:

d

dt
qj (t) = fj−1 (ρj−1 (bj−1, t))− fj (ρj (aj , t)) , j = 2, ..., N, (2)

qj (0) = qj,0 ≥ 0,

where fj−1 (ρj−1 (bj−1, t)) is defined by the evolution on supplier j − 1, while the flux on
the outgoing arc j is defined as

fj (ρj (aj , t)) =
{

min{fj−1 (ρj−1 (bj−1, t)) , µj} , qj (t) = 0,
µj , qj (t) > 0.

(3)

Notice that the flux fj (ρj (aj , t)) depends on the capacity of the queue: If the queue buffer
is empty, the inflow to supplier j is equal to the outflow from supplier j − 1, otherwise
the inflow is maximal. In other words, when there are parts in the queue the processing
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occurs at the maximal possible rate, namely µj , so to empty the queue as fast as possible.
Finally, the complete system of equations is:

∂tρj (t, x) + ∂x min
{

µj ,
Lj

Tj
ρj(t, x)

}
= 0, ∀ x ∈ [aj , bj ] , t > 0, j ∈ J , (4)

ρj (0, x) = ρj,0 (x) ≥ 0, ∀ x ∈ [aj , bj ] , (5)

d

dt
qj (t) = fj−1 (ρj−1 (bj−1, t))− fj (ρj (aj , t)) , j = 2, ..., N, (6)

qj (0) = qj,0 ≥ 0, (7)

fj (ρj (aj , t)) =
{

min{fj−1 (ρj−1 (bj−1, t)) , µj} , qj (t) = 0,
µj , qj (t) > 0.

(8)

Lemma 1 Consider a supply chain evolution ρj(t, x), qj(t), i.e. a solution to (4)-(8).
Then for every j ∈ J , t ≥ 0 and x, it holds ρj(t, x) ≥ 0, qj(t) ≥ 0.

Proof. Since the inflows (8) are positive and the fluxes fj vanish at 0, the density
parts ρj are always positive by comparison principle of conservation laws. Moreover (6)
and (8) guarantee that the derivative of queue buffer occupancy is always positive when
the queue is empty, thus the conclusion follows.

2.1 Supply networks.

The ODE-PDE model (4)-(8) can be extended to the case of networks, see [18]. The
main idea is to introduce traffic distribution coefficients at nodes, which describe how the
outgoing flux from a given node distribute over suppliers which are downstream.

More precisely, a network is a directed graph formed by a set of arcs J and a set
of vertices V. Each arc j ∈ J , parameterized by an interval [aj , bj ], models a supplier
(possibly having infinite endpoints) and there is a queue in front of it if aj > −∞. Each
vertex v is connected to some incoming arcs and some outgoing arcs. On the other side
each arc is outgoing for at most one vertex and is incoming for at most one vertex. More
precisely j is outgoing for some vertex if aj > −∞ and is incoming for some vertex if
bj < +∞. We indicate by Inc(v) ⊂ J the set of incoming arcs into v and by Out(v) ⊂ J the
set of outgoing arcs from v. For each v there exist distributions coefficients (av,j)j∈Out(v)

such that av,j ∈]0, 1[ and
∑

j∈Out(v) aj,v = 1. The coefficient av,j represents the percentage
of flux outgoing from v which is directed to the supplier j.

The model (4)-(8) can be modified as follows to deal with networks. Notice that (4),
(5) and (7) have the same expression. Now fix a supplier j, with aj > −∞, and let v be
the vertex such that j ∈ Out(v). Equation (6) is replaced by:

d

dt
qj (t) = av,jfv(t)− fj (ρj (aj , t)) (9)

where
fv(t) =

∑

k∈Inc(v)

fk (ρk (bk, t)) (10)
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and (8) is replaced by:

fj (ρj (aj , t)) =
{

min{av,jfv(t), µj} , qj (t) = 0,
µj , qj (t) > 0.

(11)

Also in this case we have positivity of solutions, more precisely:

Lemma 2 Consider a supply network evolution ρj(t, x), qj(t), i.e. a solution to (4), (5),
(7), (9), (10), (11). Then for every j ∈ J , t ≥ 0 and x, it holds ρj(t, x) ≥ 0, qj(t) ≥ 0.

Proof. Since aj,v > 0, the inflows (11) are positive and, as before, the fluxes fj vanish
at 0, thus the density parts ρj are always positive by comparison principle of conservation
laws. Equations (9), (10) and (11) ensure that the derivative of queue buffer occupancy
is always positive when the queue is empty, thus the conclusion follows.

3 The Upwind-Euler scheme

In this Section we introduce the Upwind-Euler method with various possible discretiza-
tions. For simplicity we focus on supply chains, being the case of networks entirely similar.

Numerical results for parts dynamics on a supply chain are obtained finding, for each
arc j, suitable approximation for the density ρj (t, x), and the queue buffer occupancy
qj (t). In particular, we need a PDE numerical method and an ODE one: We choose the
Upwind scheme for the PDE and the explicit Euler scheme for the ODE.
For each arc j ∈ J , define a numerical grid in [0, Lj ]× [0, T ] using the following notations:

• ∆xj = Lj

Nj
is the space grid mesh, where Nj is the number of segments into which

we divide the j-th supplier;

• ∆tj = T
ηj

is the time grid mesh, where ηj denotes the number of segments into which
[0, T ] is divided;

• (xi, t
n)j = (i∆xj , n∆tj), i = 0, ..., Nj , n = 0, ..., ηj are the grid points;

• jρn
i is the value taken by the approximated density at the point (xi, t

n)j ;

• qn
j is the value taken by the approximate queue buffer occupancy at time tn.

The Upwind method reads:

jρn+1
i = jρn

i −
∆t

∆x

Lj

Tj

(
jρn

i − jρn
i−1

)
, j ∈ J , i = 0, ..., Nj , n = 0, ..., ηj , (12)

with CFL condition given by

∆t ≤ ∆x

maxj
Lj

Tj

, (13)

while the explicit Euler method is given by:

qn+1
j = qn

j + ∆t
(
fn

j−1,out − fn
j,inc

)
, j ∈ J \ {1} , n = 0, ..., ηj , (14)
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where
fn

j−1,out = fj−1(j−1ρn
Nj−1

),

fn
j,inc =

{
min

{
fj−1(j−1ρn

Nj−1
), µj

}
, qn

j (t) = 0,

µj , qn
j (t) > 0.

(15)

Boundary data are treated using ghost cells and the expression of inflows given by (15).
Assuming that the numbers Lj have rational ratios, it is possible to choose a space

grid mesh ∆x and a common time grid mesh ∆t. We will discuss below the general case.

3.1 Correction of numerical fluxes in case of negative queues

The ODE numerical scheme does not necessarily maintain the positivity properties of the
true solutions given by Lemma 1. We thus modify the Euler scheme so as to accomplish
positivity of queue buffer occupancies.

Consider a supplier j and a time interval
[
tn, tn+1

[
so that qn+1

j < 0 < qn
j . Then we

define qj (t) for every time t by linear interpolation, see Figure 2, namely

qj (t) =
qn+1
j − qn

j

∆t
t +

qn
j tn+1 − qn+1

j tn

∆t
, t ∈ [

tn, tn+1
[
. (16)

Then q(·) vanishes at some time t > tn, which is computed by (16):

j
q t

t

't

t

n
t

1n
t

n

j
q

1n

j
q

t

Figure 2: Negative queue buffer occupancy at tn+1.

t = tn + ∆t′, ∆t′ =
qn
j

qn
j − qn+1

j

∆t =
qn
j

µj − fn
j−1,out

. (17)

Correcting to zero qj (t) , t ∈ [
t, tn+1

]
, the following numerical correction for the entering

flux fn
j,inc is needed:

fn
j,inc =

1
∆t

[
∆t′µj +

(
∆t−∆t′

)
fn

j−1,out

]
. (18)
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The correction (18) on the boundary incoming data for the supplier j influences the ap-
proximation of ρj (x, t), with consequent effects on the dynamics for following suppliers
and queues.
We have the following (cfr. Lemma 1):

Lemma 3 Consider a numerical solution jρn
i , qn

j , defined using the flux correction (18),
such that jρ0

i ≥ 0 and q0
j ≥ for all j ∈ J , i = 1, . . . , Nj. Then jρn

i ≥ 0, qn
j ≥ 0, for all

n ≥ 0, j ∈ J , i = 1, . . . , Nj.

Proof. By formulas (12), (13) and (15), since jρ0
i ≥ 0, for all j ∈ J , i = 1, . . . , Nj , we

clearly have that jρn
i ≥ 0, qn

j ≥ 0, for all n ≥ 0, j ∈ J , i = 1, . . . , Nj .
Now if (14) gives rise to a negative value for some j ∈ J and n ≥ 1, then using the flux
correction (18), we can write:

qn+1 = qn
j +∆t

(
fn

j−1,out − fn
j,inc

)
= qn

j +∆t

(
fn

j−1,out −
1

∆t

[
∆t′µj +

(
∆t−∆t′

)
fn

j−1,out

])
.

Then by (17), we have:

qn+1 = qn
j + ∆tfn

j−1,out −
[
∆t′µj +

(
∆t−∆t′

)
fn

j−1,out

]
= qn

j + ∆t′(fn
j−1,out − µj) = 0.

Remark 4 An alternative method to avoid negativity of queues is the use of adaptive time
meshes, where ∆t is replaced by ∆t′ computed in (17).
Alternatively, one may modify the equation for q with a relaxation term when the queue
buffer is decreasing to zero. In other words q is exponentially decaying to zero when the
queue is emptying. This gives rise to a nonlinear stiff equation and restrictions on the
time steps must be carefully addressed, see [19].

3.2 Different space and time grid meshes

We now consider the possibility of choosing different space and/or time grid meshes. This
is necessary in the general case in which Lj have not rational ratios, but can also be useful
for computational complexity reduction, as we will see in Section 6.

3.2.1 Different space meshes for different suppliers

For each supplier j ∈ J , the numerical grid in [0, Lj ] × [0, T ] is defined choosing a fixed
time grid mesh ∆t, then different space grid meshes are necessary. Set ∆xj = vj∆t, where
vj := Lj

Tj
indicates the processing velocity. Then, grid points are (xi, t

n)j = (i∆xj , n∆t),
i = 0, ..., Nj , n = 0, ..., ηj . The Upwind scheme for the parts density of the arc j now
reads:

jρn+1
i = jρn

i −
∆t

∆xj
vj

(
jρn

i − jρn
i−1

)
, j ∈ J , i = 0, ..., Nj , n = 0, ..., ηj . (19)

7



The CFL condition (see [23]) is automatically satisfied since:

∆t = min
{

∆xj

vj
: j ∈ J

}
. (20)

For queues we refer again to equation (14).
In case of negative values of queues, fluxes corrections have to be considered, which are
the same as in Section 3.1.

3.2.2 Different time meshes for different suppliers

We now consider the case of different temporal meshes (and same space meshes). Fix two
consecutive arcs j − 1 and j, then two different numerical grids are defined, whose points
are, respectively:

(xk, t
nj−1)j−1 = (k∆x, nj−1∆tj−1) , k = 0, .., Nj−1, nj−1 = 0, ..., ηj−1,

(
jxk, t

nj
)

= (k∆x, nj∆tj) , k = 0, .., Nj , nj = 0, ..., ηj .

For the queue buffer occupancy the explicit Euler is given by:

q
nj+1
j = q

nj

j + ∆tj

(
f

nj

j−1,out − f
nj

j,inc

)
. (21)

where f
nj

j,inc is computed as in (15), while f
nj

j−1,out must be suitably defined. If ∆tj−1 < ∆tj ,
we define m (nj) and M (nj) as:

m (nj) = sup {m : m∆tj−1 ≤ nj∆tj} ;

M (nj) = inf {M : M∆tj−1 ≥ (nj + 1) ∆tj} ,

and set

f
nj

j−1,out =
M(nj)−m(nj)−1∑

l=1

∆tj−1fj−1(j−1ρ
m(nj)+l
Nj−1

)

+ [(m (nj) + 1)∆tj−1 − nj∆tj ] fj−1(j−1ρ
m(nj)
Nj−1

)+

+ [(nj + 1) ∆tj − (M (nj)− 1) ∆tj−1] fj−1(j−1ρ
M(nj)−1
Nj−1

).

Notice that, in the special case ∆tj = γ∆tj−1, γ ∈ Nr {1}, we simply have:

f
nj

j−1,out =
M(nj)−m(nj)−1∑

l=1

∆tj−1fj−1(j−1ρ
m(nj)+l
Nj−1

) =
γ∑

l=1

∆tj−1fj−1(j−1ρ
γnj+l
Nj−1

).

If, on the contrary, ∆tj−1 > ∆tj , we set

f
nj

j−1,out = f

�
nj∆tj
∆tj−1

�
j−1 ,

where b·c indicates the floor function.
CFL conditions now reads:

∆tj ≤ ∆x

vj
, j = 1, . . . , N.

In case of negative values of queues, fluxes corrections have to be considered. The modi-
fications w.r.t. Section 3.1 can be easily computed and are omitted for sake of space.
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4 Convergence

The aim of this Section is to study the convergence of the Upwind-Euler numerical scheme.
The main idea is to compare numerical solutions with those produced by a Wave Front
Tracking algorithm and control the norm of generalized tangent vectors which measure
the distance, as in [21].

We consider a Cauchy problem of the type (4)-(8), with initial conditions ρj,0 in BV,
the space of bounded variation functions. Fix an initial space meshes ∆x0 and define a
sequence of approximate solutions ν,jρn

i , generated sampling the initial datum ρj,0 on grids
with space meshes ∆xj,ν = 2−ν∆xj,0 and using the time meshes:

∆tj,ν =
∆xj,ν

vj
= 2−ν ∆xj,0

vj
, (22)

where vj is the velocity of the j-th suppliers, thus granting the CFL conditions. More
precisely:

ν,jρ0
i = ρj,0

(
(aj + i 2−ν∆xj,0) +

)

where (· +) indicates the limit from the right, which exists because of the assumption of
BV initial data. We can define a projection of the approximate solution over the space of
piecewise constant functions by setting:

πPC

(
ν,jρn

)
=

Lj/2−ν∆xj,0−1∑

i=0

ν,jρn
i χ[aj+i 2−ν∆xj,0,aj+(i+1)2−ν∆xj,0[

where χ[a,b] is the indicator function of the set [a, b].
We define the corresponding queue buffer occupancy approximations νqn

j as specified in
the previous Section and consider the projection over piecewise linear function:

πPL (νqj) (t) = νqn
j + (t− n∆tj,ν)(νqn+1

j − νqn
j ) for t ∈ [n∆tj,ν , (n + 1)∆tj,ν [.

We will also consider the Wave Front Tracking (briefly WFT) solution jρWFT
ν starting

from the initial datum
πPC

(
ν,jρ0

)
.

Roughly speaking, a WFT solution is obtained in the following way:

• Solve the Riemann problems corresponding to discontinuities of πPC

(
ν,jρ0

i

)
;

• Use the piecewise constant solution obtained piecing together the solutions to Rie-
mann problems up to the first time of interaction of two shocks;

• Then solve a new Riemann problem created by interaction of waves and prolong the
solution up to next interaction time, and so on.

To ensure the existence of WFT solutions and their convergence, it is enough to control
the number of waves, interactions and the BV norm. This is easily done in scalar case
since both the number of waves and the BV norm are decreasing in time. We refer the
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reader to [4] for details.
For queues we use the exact solutions to (6) and indicate them by νqWFT

j . BV estimates
for complete ODE-PDE model (4)-(8) are proved in [21].

For a general WFT scheme we should replace, in solutions to Riemann problems,
possible rarefactions by a set of small non entropic shocks of size 2−ν . However, in our
case rarefactions do not show up because the flux is piecewise linear. Let us describe in
detail solutions to Riemann problems.
Fix a supplier j and consider a Riemann problem with initial data (ρ−, ρ+). Then we have
to distinguish some cases:

• ρ− < µj . In this case the solution is given by a shock travelling with velocity
λ = fj(ρ+)−fj(ρ−)

ρ+−ρ− (which equals vj in case ρ+ ≤ µj).

• ρ− = µj . Then the solution is a shock travelling with velocity vj if ρ+ < µj and
with zero velocity if ρ+ > µj .

• ρ− > µj . If ρ+ ≥ µj then the solution is a shock with zero velocity. Otherwise, the
solution is formed by a first shock (ρ−, µj) travelling with zero velocity and a second
shock (µj , ρ+) travelling with velocity vj .

Notice that as soon as a boundary datum will achieve a value below µj , then in finite
time all values above µj will disappear from the j-th supplier, see also [21]. Therefore, for
simplicity, we will assume

ρj,0(x) ≤ µj . (23)

Then the same inequality will be satisfied for all times both for the numerical approxima-
tion and wave front tracking ones, i.e.:

πPC

(
ν,jρn

)
(x) ≤ µj for all n ≥ 0, x ∈ [aj , bj ], (24)

jρWFT
ν (t, x) ≤ µj for all t ≥ 0, x ∈ [aj , bj ]. (25)

In this case solutions to Riemann problems are particularly simple, indeed the conservation
law is linear, thus given some Riemann data (ρ−, ρ+) on the j-th supplier, the solution
is always given by a shock travelling with velocity vj . Therefore, the WFT solution will
differ from the projected numerical ones only for effects due to queues dynamics.

To prove convergence of the numerical scheme, we thus compare the projected numeri-
cal solution (πPC

(
ν,jρn

)
, πPL(νqj)) with the wave front tracking solution (jρWFT

ν ,ν qWFT
j ).

More precisely we consider their difference as expressed by a generalized tangent vector,
i.e. write:

πPC

(
ν,jρn

)
(t) = jρWFT

ν (t) +
∑

α∈Aj(t)

ξα(t)∆ρα(t), (26)

πPL(νqj)(t) = νqWFT
j (t) + ηj(t), (27)

where Aj(t) is the set of discontinuities of jρWFT
ν at time t and ∆ρα the strength of

the given discontinuity (i.e. the value of the jump). In other words the part den-
sity πPC

(
ν,jρn

)
(t) is obtained from jρWFT

ν (t) shifting the shocks of quantities ξα, while
πPL(νqj)(t) is obtained from νqWFT

j shifting its value of ηj(t). We use the symbol (ξ, η)ν
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to indicate the collection of all tangent vectors over all suppliers.
This approach was used in [21] to study uniqueness and continuous dependence of solu-
tions. We report the general construction in the Appendix for reader’s convenience. The
norms of tangent vectors to WFT solutions are proved to be decreasing in time as stated
in Lemma 8 of the Appendix (for a proof see [21]).
Our idea is to study the evolution of tangent vectors defined in (26)-(27) to estimate the
increase in time of their norms defined as:

‖(ξ, η)ν(t)‖ =
∑

j

∑

α∈Aj(t)

|ξα∆ρα|+
∑

j

|ηj(t)|.

Notice that:

‖(ξ, η)ν(t)‖ =
∑

j

‖πPC

(
ν,jρn

)
(t)− jρWFT

ν (t)‖L1 +
∑

j

|πPL(νqj)(t)− νqWFT
j (t)|. (28)

First of all the evolution inside suppliers of tangent vectors is the same as for the part
densities, i.e. shifts evolves travelling at velocity vj on the j-th supplier, and no increase
of norms occur. Such increase may occur in three cases:

• Interaction of a wave with an empty queue;

• Interaction of a wave with a non empty queue;

• Emptying of a queue.

Let us start analyzing what happens when a wave interacts with an empty queue, say
the j-th queue. Let us call ξ−, ∆ρ−, η−, respectively ξ+, ∆ρ+, η+, the values of jump
shift, jump and queue shift before, respectively after, the interaction. The shifted wave
interacts with the queue with a time delay given by δt = ξ−

vj−1
and the new shift is given

by ξ+ = vj δt = vj

vj−1
ξ−. Since the queue is empty before the interaction, we have η− = 0,

while η+ = (∆ρ− −∆ρ+)ξ−. Therefore

|ξ+ ∆ρ+|+ |η+| = |ξ−|
(

vj

vj−1
|∆ρ+|+ |∆ρ− −∆ρ+|

)
≤ max

{
vj

vj−1
, 1

}
|ξ−∆ρ−|, (29)

where we used the fact that ∆ρ− and ∆ρ+ have the same sign.
Let us now consider the interaction with a nonempty queue. Calling ξ−, ∆ρ− the values
of shifts and jumps before the interaction and by η+ the produced shift in the queue, we
simply get:

η+ = ξ−∆ρ−, (30)

thus the norm of the tangent vector is constant.
We now focus on the case of the j-th queue emptying at some time t̄ ∈ [n∆tj,ν , (n+1)∆tj,ν [,
i.e the queue buffer has positive values in a left neighborhood of t̄ and vanishes in a right
neighborhood of t̄. Then the WFT solution will generate a wave on the j-th supplier
starting at time t̄, while the projected numerical solution will generate two waves at times

11



n∆tj,ν and (n + 1)∆tj,ν . More precisely at time (n + 1)∆tj,ν , in a right neighborhood of
the left endpoint aj , we have:

jρWFT
ν ((n + 1)∆tj,ν , x) =

{
fn

j−1,out x ∈ [aj , aj + vj(t̄− n∆tj,ν)[
µj x ∈ [aj + vj(t̄− n∆tj,ν), aj + 2 vj∆tj,ν ]

,

πPC

(
ν,jρn+1

)
(x) =

{
ρ∗ x ∈ [aj , aj + vj∆tj,ν [
µj x ∈ [aj + ∆tj,ν , aj + 2 vj∆tj,ν ]

,

where ρ∗ is a value in the interval [fn
j−1,out, µj ] (notice that fn

j−1,out < µj since we assumed
that the queue is emptying). This situation can be detected by tangent vectors if we
consider the discontinuity (fn

j−1,out, µj) as splitted in two parts: α = (fn
j−1,out, ρ

∗) and β =
(ρ∗, µj) considering the shifts ξα = −vj(t̄− n∆tj,ν) < 0 and ξβ = vj((n + 1)∆tj,ν − t̄) > 0.
These two shifts are caused because of the approximation and the relative norm of tangent
vectors are estimated as follows:

|ξα∆ρα| = vj(t̄− n∆tj,ν) (ρ∗ − fn
j−1,out),

|ξβ∆ρβ| = vj((n + 1)∆tj,ν − t̄) (µj − ρ∗),

therefore we can write:

|ξα∆ρα|+ |ξβ∆ρβ| ≤ ∆tj,ν (µj − fn
j−1,out). (31)

Finally we have:

Lemma 5 Assume (23) holds true and consider the tangent vector (ξ, η)ν defined by (26),
(27). Then it holds:

‖(ξ, η)ν(t)‖ ≤ 2−ν K


∑

j

TV (ρj,0) +
∑

j≥2

max{µj−1, µj}

 ,

where TV (·) indicates the total variation and

K =
(

max
j

∆xj,0

vj

) 


N∏

j=2

max
{

vj

vj−1
, 1

}
 . (32)

Proof. The norm of the tangent vector at initial time is zero. Then it may increase due
to queues emptying. For the j-th queue, such increase, estimated by (31), is bounded by
∆tj,ν times the strengths of waves interacting with the queue, which in turn is bounded
by the total variation of j−1ρWFT

ν . On the other side, from (23), we get (25) thus, from
formula (2.10a) and (2.10b) at page 165 of [21], we have:

∑

j

TV (jρWFT
ν (t)) ≤

∑

j

TV (ρj,0) +
∑

j≥2

∣∣∣∣∣
d νqWFT

j

dt
(0)

∣∣∣∣∣ .

12



Moreover, it holds: ∣∣∣∣∣
d νqWFT

j

dt
(0)

∣∣∣∣∣ ≤ max{µj−1, µj}.

The norm of the tangent vector may further increase due to interactions of waves with
queues, but such increase is estimated in (29) and (30). Therefore by (22) we conclude.
Since WFT approximations are converging to a solution to the ODE-PDE coupled model,
as proved in [21], from Lemma 5 we get that also (πPC

(
ν,jρn

)
, πPL(νqj)) are converging

to a solution.
We now want further to estimate the convergence rate. For this purpose, define the
convergence error as:

Eν(n) =
∑

j

∑

i

2−ν∆xj,0

∣∣ν,jρn
i − ν+1,jρn

i

∣∣ +
∑

j

|νqn
j − ν+1qn

j |

=
∑

j

‖πPC

(
ν,jρn

)− πPC

(
ν+1,jρn

) ‖L1 +
∑

j

|νqn
j − ν+1qn

j |. (33)

Moreover, we have:

Eν(0) =
∑

j

‖jρWFT
ν (0)− jρWFT

ν+1 (0)‖L1 ≤ 2−(ν+1)
∑

j

∆xj,0 TV (ρj,0). (34)

We then first estimate the increase of the distance between jρWFT
ν and jρWFT

ν+1 in time.
Notice that the initial datum jρWFT

ν+1 (0) = πPC

(
ν+1,jρ0

)
can be obtained from jρWFT

ν (0) =
πPC

(
ν,jρ0

)
by possibly shifting waves with tangent vectors with norms of the order

2−(ν+1)∆xj,0, in fact both functions are obtained sampling the same BV function on
different subgrids. Then we can control the distance by Lemma 8 of the Appendix. More
precisely:

∑

j

‖jρWFT
ν (t)− jρWFT

ν+1 (t)‖L1 +
∑

j

|νqWFT
j (t)− ν+1qWFT

j (t)| ≤
∑

j

‖jρWFT
ν (0)− jρWFT

ν+1 (0)‖L1 . (35)

Now the convergence error can be written as:

Eν(n) ≤ ‖jρWFT
ν (n∆tν)− jρWFT

ν+1 (n∆tν)‖L1 +
∑

j

|νqWFT
j (n∆tν)− ν+1qWFT

j (n∆tν)|

+
∑

j

‖πPC

(
ν,jρn

)
(t)− jρWFT

ν (t)‖L1 +
∑

j

|πPL(νqj)(t)− νqWFT
j (t)|

+
∑

j

‖πPC

(
ν+1,jρn

)
(t)− jρWFT

ν+1 (t)‖L1 +
∑

j

|πPL(ν+1qj)(t)− ν+1qWFT
j (t)|.

Last four addenda can be estimated using (28) and Lemma 5. While the first two addenda
are estimated using (35) and (34). Finally we get:

Eν(n) ≤ 2−(ν+1)
∑

j

∆xj,0 TV (ρj,0)+(2−ν+2−(ν+1)) K


∑

j

TV (ρj,0) +
∑

j≥2

max{µj−1, µj}



13



= 2−ν


1

2

∑

j

∆xj,0 TV (ρj,0) +
3
2

K


∑

j

TV (ρj,0) +
∑

j≥2

max{µj−1, µj}




 ,

where K is defined in (32). Finally we get the following:

Theorem 6 Assume that ρj,0 are BV functions, ρj,0(x) ≤ µj for every x and (22) holds
true. Then the convergence error Eν(n) (defined in (33)) tends to zero uniformly in n
with linear convergence rate in ∆xj,ν = 2−ν∆xj,0.

5 Numerical tests : Part I

We present some simulation results to illustrate the outcome of methods and discussion
of previous Sections. To fix notation, let us define:

• ordinary method (OM): Upwind scheme for densities, equation (12); Euler scheme
for queues, equation (14);

• different spatial steps method (DSSM): Upwind scheme for densities, equation (19),
with different CFL conditions, equation (20); Euler scheme for queues, equation
(14);

• different temporal steps method (DTSM): Upwind method for densities, equation
(12); modified Euler scheme for queues, equation (21).

5.1 First test - negative queue buffer occupancies

In this test we show the importance of flux corrections in case of oscillating queue buffer
occupancies (see subsection 3.1).
Consider a supply chain with N = 4 suppliers and the following parameters: Lj = Tj = 1,
j = 1, .., 4; µ1 = 99, µ2 = 12, µ3 = 10, µ4 = 8. The initial conditions are: ρj,0 ≡ 0,
j = 1, ..., 4, qj,0 = 0, j = 2, 3, 4. A total simulation time T = 300 is considered and for the

first arc the inflow profile is given by f1 (t) = 7.5
(

1 + sin
3πt

20

)
.

Figure 3 depicts the evolutions of uncorrected and corrected queue buffer occupancies
q2(t), simulated by OM with ∆x = ∆t = 0.2. It shows that meaningful numerical errors
occur if flux corrections are not used. At time t = 270, the relative difference among peaks
of corrected and uncorrected queue buffer occupancies is about 29%. In terms of L1 norm
the relative error in about 44.4% for t ∈ [270, 300].
An erroneous approximation of q2(t) has a cascade effect, affecting the evolution of parts
density for the supplier 2, but then also q3(t), q4(t), ρ3(t, x) and ρ4(t, x). In Figure 4
ρ3(30, x) is depicted with and without correction. Notice that the presence of a nega-
tive q2(t) generated an evolution of ρ3(30, x) which is completely different from the real
dynamic. At x = 0.6, the relative error in ρ3(30, x) is about 40%.
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Figure 3: Queue buffer occupancy q2: behaviour without flux correction (dashed line) and
with flux correction (solid line).
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Figure 4: Behaviour of the density on the arc 3 at t = 30 with flux correction (dashed
line) and without flux correction (continuous line).

15



5.2 Second test - different space and time meshes

We consider a supply chain with N = 4 suppliers. Maximal fluxes, processing times and
lengths of each supplier are reported in the following table (see [17]):

supplier j µj Tj Lj

1 25 1 1
2 15 1 0.2
3 10 3 0.6
4 15 1 0.2

We assume that all arcs are empty at t = 0, i.e. ρj,0 ≡ 0; also queues at t = 0 are assumed
empty: qj,0 = 0, j = 2, 3, 4. The total simulation time is T = 140. The inflow for the first
supplier is given by:

f1 (t) =





18
35 t, 0 ≤ t ≤ T

4 ,

36− 18
35 t, T

4 < t < T
2 ,

0, T
2 ≤ t ≤ T.

(36)

In Figure 5 (left), we present the simulation results for queue buffer occupancies, obtained
by OM with ∆x = 0.0125, ∆t = 0.5∆x. Different behaviour for queues occur: q4 remains
empty as µ4 > µ3, while q3 is higher than q2 although processing velocities v2 and v3

are the same. We then run the same test for DSSM and DTSM, choosing, respectively,

20 40 60 80 100 120 140
t

0
20
40
60
80

100
120
140

qiHtL

q4HtL
q3HtL
q2HtL

47.8 47.82 47.84 47.86 47.88 47.9 47.92
t

8.1

8.2

8.3

8.4
q2HtL

q2HtL, ordinary
q2HtL, Dx j

q2HtL, Dt j

Figure 5: Behaviour of queues for OM (left) and comparison with other methods for q2

(right).

∆t = 0.0125 and ∆x = 0.0125. Other parameters for such methods are the same of OM.
In Figure 5 (right), the behaviour of the queue buffer occupancy q2(t) is shown. Different
numerical approximations give rise to very similar results.
A further analysis on CPU times (measured in seconds and computed by a Pentium 4,
CPU 3.20 GHz, RAM 512 Mb) and convergence errors is made to compare methods. The
following tables reports the obtained results.

∆x CPU L1 errors
0.00625 1.703 0.001734
0.0125 0.156 0.079465
0.025 0.062 0.160575
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Table 1: CPU times and L1 errors for OM.

∆t ∆x1 ∆x2 ∆x3 ∆x4 CPU L1 errors
0.00625 0.00625 0.00125 0.00125 0.00125 1.671 0.002911
0.0125 0.0125 0.0025 0.0025 0.0025 0.140 0.027847
0.025 0.025 0.005 0.005 0.005 0.046 0.132399

Table 2: CPU times and L1 errors using DSSM.

∆x ∆t1 ∆t2 ∆t3 ∆t4 CPU L1 errors
0.00625 0.0025 0.01875 0.0125 0.00625 0.828 0.003435
0.0125 0.05 0.00375 0.0025 0.00125 0.140 0.059411
0.025 0.1 0.075 0.05 0.025 0.046 0.127714

Table 3: CPU times and L1 errors using DTSM.

We note that all previous tables contain no meaningful differences, for ∆x = 0.025 and
∆x = 0.0125, in terms of CPU times. Differences occur for the value ∆x = 0.00625 for
DTSM because of coarser grids used in three suppliers, thus at the price of less precision.
As for L1 errors, they are almost the same for OM, DSSM, and DTSM.
We conclude that, as expected, the considered methods have almost the same character-
istics, as for goodness of approximation versus CPU times and L1 errors.

6 Improvement of CPU times

In order to address the simulation of large networks, we aim at improving computational
performances.

6.1 Logic pointer approach

Recall the Upwind scheme (12). If space and time grid sizes are set according to the
relation ∆tj = vj ∆xj then jρn+1

i+1 =j ρn
i . In other words, the density values at time

n + 1 are obtained by those at time n by shifting of one position in the space grid. The
computational complexity can be highly reduced by using a logic pointer, that allows to
avoid the data shift in the vector of densities.
For a better comprehension of such strategy, consider a supplier of length L, divided into
n segments. At t = 0, we suppose that the supplier is empty. At t = 1, the density value
V1 on the first segment is computed and the pointer is set to position 1. At t = 2, densities
should be shifted while the new density value for the first segment, V2, is computed. The
physical shift inside the vector is not considered and the pointer is updated to the second
position corresponding to V2 (Figure 6), discarding the previous value and considering
cyclic order in the vector. This operation is repeated until a time t = n, while at t = n+1
the new density is allocated in the first segment and the pointer is set back to position 1
and so on.
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Link

V1 V2 0 0 0
V2 V1 0 0 0

t = 2

Density vector

Density on the first segment of the 

link

Figure 6: Situation at t = 2.

Operations and computational costs for OM and LP method are examined in the following
table where # denotes the cardinality.

Operations Computational costs

Densities ∼ ∑
j # Lj

∆xj

Boundary data ∼ #J × T
∆tj

Operations Computational costs
Densities ∼ #J

Logic pointers ∼ #J

Boundary data ∼ #J × T
∆tj

Table 4: Computational costs for OM (left) and LP (right).

Notice that the update of densities for each supplier depends on space grid size for OM.
Such dependence vanishes using the LP approach, while the cost of logic pointer update
is fixed. Therefore, we get a substantial reduction of computational costs as illustrated in
Section 7.

6.2 Different indices numeration

A concatenated list is used to store all informations about part densities on suppliers, each
one identified by a sequential index. Then, informations for each link are obtained by a
sequential research requiring a computational time directly proportional to the number N
of suppliers. The computational complexity is O(N) in the worst case, that occurs when
the last arc of the list must be found.
In order to decrease the computational complexity, a vector, “Heap” whose i−th element
identifies the i− th arc by a pointer, is used. In this way, the generic arc i is found by
a direct access to the i− th position of the vector, Heap[i]. The numerical complexity of
the research operation becomes O (1), independently from the supply chain dimensions.

7 Numerical tests - Part II

We make an analysis of CPU times for the approaches described in Section 6.
Consider a sequential supply chain with four suppliers and the following parameters: Lj =
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Tj = 1, j = 1, 2, 3, 4; µ1 = 25, µ2 = 15, µ3 = 10, µ4 = 15. We first use the method OM
with different ∆x = ∆t, total simulation time T = 140, empty queues and arcs as initial
condition and inflow profile for the first supplier as in (36). CPU times (measured in
seconds and evaluated by a Pentium 4, CPU 3.20 GHz, RAM 512 Mb) and convergence
orders are then compared with those of LP and DIN approaches. The following table
shows the obtained results.

Numerical Code ∆x = 0.00625 ∆x = 0.0125 ∆x = 0.025

OM
CPU = 0.359,
γ = 0.982134

CPU = 0.109,
γ = 0.991122

CPU = 0.046,
γ = 0.946229

LP
CPU = 0.046,
γ = 0.982134

CPU = 0.031,
γ = 0.991122

CPU = 0.015,
γ = 0.946229

DIN + LP
CPU = 0.031
γ = 0.982134

CPU = 0.015,
γ = 0.991122

CPU = 0.015,
γ = 0.946229

Table 5: CPU times and convergence order (γ) for different numerical approaches.

We then considered a supply chain with N = 10 suppliers with the following param-
eters: Li = Ti = 1, i = 1, ..., 10; µ1 = 100; µ2 = 7; µ3 = 10; µ4 = 8; µ5 = 15; µ6 = 6;
µ7 = 18; µ8 = 7; µ9 = 5; µ10 = 9. For OM we used different ∆x = ∆t, total simulation
time T = 140, empty queues and arcs and input profile as in (36). CPU times (measured
in seconds and evaluated by a Pentium 4, CPU 3.20 GHz, RAM 512 Mb) and convergence
orders are again compared with those obtained by LP and DIN approaches. The following
table summarizes the results.

Numerical Code ∆x = 0.00625 ∆x = 0.0125 ∆x = 0.025

OM
CPU = 0.953,
γ = 0.900810

CPU = 0.312,
γ = 1.122965

CPU = 0.094,
γ = 1.023330

LP
CPU = 0.140,
γ = 0.900810

CPU = 0.078,
γ = 1.122965

CPU = 0.046,
γ = 1.023330

DIN + LP
CPU = 0.093,
γ = 0.900810

CPU = 0.046,
γ = 1.122965

CPU = 0.031,
γ = 1.023330

Table 6: CPU times and convergence order (γ) for different numerical approaches.

Convergence orders and the obtained numerical results for queues and densities are
very similar for OM, LP, and DIN + LP. On the contrary, CPU time can decrease of up to
90% for the two last numerical approaches. This is more evident when the number of arcs
of the supply chain is very large, as shown from the following simulation case. Consider
a supply chain with N = 100 arcs, and the following characteristics: Li = Ti = 1,
i = 1, ..., 100; µ1 = 100; µi = 5, i = 2, ..., 100. For OM we chose different ∆x = ∆t,
total simulation time T = 140, empty arcs and queues and input profile as in (36). CPU
times (measured in seconds and evaluated by a Pentium 4, CPU 2 GHz, RAM 2 GHz) are
compared with those obtained by LP and DIN approaches. The following table reports
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the obtained results.

Numerical Code ∆x = 0.00625 ∆x = 0.0125 ∆x = 0.025
OM 14.406 5.719 2.515
LP 5.500 2.906 1.500

DIN + LP 0.953 0.562 0.265

Table 7: CPU times for different numerical approaches.

Appendix

Let us first focus on the ρjs: a “generalized tangent vector” consists of two components
(v, ξ), where v ∈ L1 describes the L1 infinitesimal displacement, while ξ ∈ Rn describes
the infinitesimal displacement of discontinuities. A family of piecewise constant functions
θ → ρθ, θ ∈ [0, 1], with the same number of jumps say at the points xθ

1 < ... < xθ
M , admits

a tangent vector if the following functions are well defined:

L1 3 vθ(x)=̇ lim
h→0

ρθ+h(x)− ρθ(x)
h

,

and also the numbers

ξθ
β=̇ lim

h→0

xθ+h
β − xθ

β

h
, β = 1, ...,M.

Notice that the path θ → ρθ is not differentiable w.r.t. the usual differential structure of
L1, in fact if ξθ

β 6= 0, as h → 0 the ratio
[
ρθ+h(x)− ρθ(x)

]
/h does not converge to any

limit in L1.
The L1-length of the path γ : θ → ρθ is given by:

‖γ‖L1 =

1∫

0

∥∥∥vθ
∥∥∥

L1
dθ +

M∑

β=1

1∫

0

∣∣∣ρθ(xβ+)− ρθ(xβ−)
∣∣∣
∣∣∣ξθ

β

∣∣∣ dθ. (37)

According to (37), the L1-length of a path γ is also equal to the integral of the norm of
its tangent vector, defined as follows:

‖(v, ξ)‖ =̇ ‖v‖L1 +
M∑

β=1

|∆ρβ| |ξβ| ,

where ∆ρβ = ρ(xβ+)− ρ(xβ−) is the jump across the discontinuity xβ.
Now, given two piecewise constant functions ρ and ρ′, call Ω(ρ, ρ′) the family of all

“differentiable” paths γ : [0, 1] → γ(t) with γ(0) = ρ, γ(1) = ρ′. To define a Finsler type
metric d, we set the distance between ρ and ρ′ to be equal to

d(ρ, ρ′)=̇ inf
{‖γ‖L1 , γ ∈ Ω(ρ, ρ′)

}
.

To define d on all L1, for given ρ, ρ′ ∈ L1 we set

d(ρ, ρ′)=̇ inf
{‖γ‖L1 + ‖ρ− ρ̃‖L1 +

∥∥ρ′ − ρ̃′
∥∥

L1 :

ρ̃, ρ̃′ piecewise constant functions, γ ∈ Ω(ρ, ρ′)
}

.

It is easy to check that this metric coincides with the usual L1 metric.
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Remark 7 Since the Finsler type metric d coincides with the usual L1 metric, the reader
could think that the whole framework is not so useful. On the contrary, the different dif-
ferential structure permits to rely on tangent vectors, whose norm can be easily controlled.
This would not be possible using the tangent vectors of the usual differential structure of
L1, i.e. having only the v component.
Also, while for systems of conservation laws it is possible to find a decreasing functional,
this is not the case for networks (see [15]), even for a scalar conservation law.

Let us now turn to the supply-chains case. It is easy to see that all paths in L1

connecting piecewise constant functions can be realized using only the ξ component of
the tangent vector, see [5]. Therefore, indicating by x

βj
i

the positions of discontinuities,
j = 1, . . . , N , i = 1, . . . , Mj , a tangent vector to a function defined on the network is given
by:

(ξ
βj

i
, ηj),

where ξ
βj

i
is the shift of the discontinuity x

βj
i
, while ηj is the shift of the queue buffer

occupancy qj . The norm of a tangent vector is given by:

‖(ξ
βj

i
, ηj)‖ =

∑

j,i

|ξ
βj

i
||∆ρ

βj
i
|+

∑

j

|ηj |.

Again, to control the distance among solutions it is enough to control the evolution of
norms of tangent vectors. Finally, we have:

Lemma 8 The norm of tangent vectors are decreasing along wave front tracking approx-
imations.
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