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Abstract

The aim of this paper is to address the following questions: which

models, among fluido-dynamic ones, are more appropriate to describe

urban traffic? While a rich debate was developed for the complicate

dynamics of highway traffic, some basic problems of urban traffic are

not always appropriately discussed. We analyze many recent, and less

recent, models focusing on three basic properties. The latter are nec-

essary to reproduce correctly queue formation at lights and junctions,

and their backward propagation on an urban network.

2000 Mathematics Subject Classification: 35L65

Key words and phrases: car traffic, fluido-dynamic models, urban traf-

fic, networks

∗E-mail: mauro.garavello@mfn.unipmn.it. Partially supported by Dipartimento di

Matematica e Applicazioni, Università di Milano Bicocca.
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1 Introduction

To study nontrivial phenomena in highways traffic, researchers from various
areas (engineering, mathematics, physics) proposed a cornucopia of models,
among which fluido-dynamic ones. The main aim of such modeling effort is to
reproduce some behavior as: synchronized flows, wide jams, relaxation times
to equilibrium velocities, etc. Of great impact in the scientific community it
was the book [29] and prior work by the same author.

Fluido-dynamic models treat traffic from a macroscopic point of view:
just the evolution of macroscopic variables, such as density and average ve-
locity of cars, is considered. Since the basic model of Lighthill-Whitham-
Richards, introduced in the 50s in [33, 36] and based on a single partial
differential equation in conservation form, does not reproduce the observed
rich dynamics (see e.g. [3, 27, 28]), many alternatives were searched for.
Some second order models, i.e. systems with two equations, were proposed
since 70s by Payne [35] and by Whitham [38]. However, as showed by Da-
ganzo in 1995 [12], all these second order models suffered of a main drawback:
cars may travel backwards on unidirectional roads! A resurrection of such
models happened with the work of Aw and Rascle [2] in 2000 and Zhang
[40] in 2002. These papers became a starting point for a lot of other traffic
models and derivations. Independently a third order model was proposed by
Helbing in 1995, see [22]. We refer the reader to [4, 17, 22] for an account of
the various approaches and also to [27, 28] for a derivation of the continuum
Helbing’s model from a mesoscopic gas-kinetic flow model.

The typical features of highways are long and straight streets, high speeds
(or big differences in velocities), no flux interruption as traffic light or yield-
ing signs, etc. The situation of urban traffic is quite different: short road
segments, many flux interruptions, reduced speeds, intricate road networks,
and so on. Classically, engineers used static models to capture some features,
but the latter were not able to capture the main issue of urban traffic: queue
formation and backward propagation. Thus, various within day models were
considered (see [1]) and, only recently, some fluido-dynamics models, as the
LWR equation, were completed with junction traffic assignments so to deal
with real networks, see [6, 9, 15, 16, 17, 21, 23, 24, 25, 26, 30, 31, 32].

While a significant debate occurred on how the various models reproduce
the highway traffic phenomena, see [4, 10, 11, 13, 14, 22, 29], less papers
focused on typical issues of urban traffic. Inspired also by the basic problem
considered by Daganzo to criticize second order models [12], the aim of the
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present paper is to analyze some basic properties, which we consider neces-
sary to model appropriately urban road networks. Namely, we focus on the
following three properties:

P1. Cars may have only positive speed.

P2. Vehicles stop only at maximum density, i.e. the velocity v is 0 if and
only if the density ρ is equal to the maximum density possible ρmax.

P3. The density at a red traffic light is the maximum possible, i.e. ρmax.

Property P1 says that cars can not go backward in unidirectional roads. It
seems an obvious property for a traffic model, even if, as mentioned above,
in the past some proposed second order models did not satisfy P1. Property
P2 says that cars have zero velocity only when the road is saturated and a
queue is formed. Clearly property P2 implies P3 when a generic state can
be connected with the zero-velocity state through waves with negative speed.
The converse in general is not true. Thus it is reasonable to ask if systems,
which do not satisfy P2, do satisfy at least P3.
Resuming, properties P1, P2 and P3 are necessary to correctly describe the
formation of queues at lights and junctions, together with their backward
propagation.

Along the paper the models are divided in scalar, second order and third
order models. In Section 2 we consider the first order model introduced
by Lighthill, Whitham and Richards (see [33] and [36]) and a multipopula-
tion model; see[5] and [39]. Section 3 deals with second order models. In
particular we deal with the Aw-Rascle-Zhang model (see [2, 40]), with the
Greenberg-Klar-Rascle multilane model (see [18, 19]), with the Siebel-Mauser
balanced vehicular model (see [37]) and with some phase transition models
(see [8, 20]). Finally Section 4 deals with the third order model, introduced
by Helbing [22] in 1995.

The main results of the paper analysis are summarized in a table in
Section 5. Resuming, the basic Lighthill-Whitham-Richards model, the mul-
tipopulation and the Colombo’s phase transition hyperbolic models seem the
more appropriate to address urban traffic modeling. However, also Siebel-
Mauser BVT model and the Greenberg-Klar-Rascle multilane model satisfy
some of the required properties. The discussion about the Helbing model is
more involved and depends on the choice of functions appearing in the model
description.
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2 First order models

This sections contains the analysis of the Lighthill-Whitham-Richards (LWR)
model and an extension to the case of a multipopulation model, i.e. a model,
which considers drivers with different characteristics. Throughout this sec-
tion, we assume that the road is unidimensional and unidirectional; hence
we model it with the real line R.

2.1 Lighthill-Whitham-Richards model

We denote with ρ(t, x) and v(t, x) respectively the density and the average
speed of cars at the position x ∈ R and at time t ≥ 0. The Lighthill-
Whitham-Richards (LWR) model is simply described by the continuum equa-
tion

ρt + (f(ρ))x = 0, (1)

where f(ρ) = ρv(ρ) is the flux function. The basic assumptions for the model
are the following ones:

(LWR1) the density ρ is positive and lower than or equal to ρmax;

(LWR2) f is a strictly concave function on [0, ρmax] such that f(ρmax) = 0.

The following results hold.

Proposition 2.1 Assume (LWR1)–(LWR2). Equation (1) is a strictly hy-
perbolic equation in conservation form and the characteristic field is genuinely
nonlinear.

This is a well known result; for a proof see for example [17]. Let us
consider now properties P1, P2 and P3.

Proposition 2.2 Assume (LWR1)–(LWR2). The LWR model (1) satisfies
properties P1, P2 and hence P3.

Proof. These properties are clearly satisfied since the fundamental hypoth-
esis (LWR2) holds and v = f(ρ)

ρ
. 2
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2.2 A multipopulation model

Multipopulation models are extensions of the LWR model and their aim is
to predict the behavior of different heterogeneous drivers. In this subsection
we consider a model introduced by Benzoni-Gavage and Colombo [5] and
independently by Wong and Wong [39].

Consider an unidimensional road of infinite length, modeled by R and the
following system of n equations

∂tρi + ∂x(ρivi) = 0, i = 1, . . . , n, (2)

where ρi(t, x) is the density of cars belonging to the i-th class (or population)
of drivers and vi is the average speed of the i-th family and it is a function
depending on (ρ1, . . . , ρn). For example, different populations can be different
typologies of vehicles, such as cars and trucks, or vehicles with different trips.

We consider the following simplifying assumptions:

(MP1) for every i ∈ {1, . . . , n}, the function vi depends only on the variable
ρ1 + · · ·+ ρn.

(MP2) there exists a scalar decreasing function ψ : [0, ρmax] → [0, 1] such
that ψ(0) = 1, ψ(ρmax) = 0 and, for every i ∈ {1, . . . , n},

vi(r) = ψ(r)Vi, (3)

where Vi > 0 is the maximal speed for the i-th population and ρmax is
the maximum possible density for the road.

For notational simplicity we rescale the system so that ρmax = 1. In this
case the model (2) is defined in the domain

D = {(ρ1, . . . , ρn) ∈ R
n : ρi ≥ 0 and ρ1 + · · · + ρn ≤ 1} . (4)

Proposition 2.3 Assume (MP1) and (MP2). In the domain D, if ρi > 0
for every i = 1, . . . , n, then the system (2) is hyperbolic.

For a proof see [5].

Proposition 2.4 Assume (MP1) and (MP2) with ψ(r) = 1 − r. Consider
(ρ̄1, . . . , ρ̄n) ∈ D such that ρ̄1+· · ·+ρ̄n < 1. There exists a point (ρ̃1, . . . , ρ̃n) ∈
D with ρ̃1 + · · · + ρ̃n = 1 such that the Riemann problem with initial data
(ρ̄1, . . . , ρ̄n) and (ρ̃1, . . . , ρ̃n) is solved with an entropy admissible shock wave
of the first family with negative speed.
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Proof. Define the function Φ : D → Rn in the following way. For every
i ∈ {1, . . . , n}, the i-th component of Φ is

Φi(ρ1, . . . , ρn) := ρi

[

1 +
Vi(1 − (ρ1 + · · ·+ ρn))

V1ρ1 + · · · + Vnρn

]

.

Therefore, the image of Φ is contained in the set D ∩ {ρ1 + · · · + ρn = 1}.
Moreover, the function Φ has the property that the points (ρ1, . . . , ρn) and
Φ(ρ1, . . . , ρn) can be connected through a shock curve. More precisely, if we
denote (ρ̃1, . . . , ρ̃n) = Φ(ρ̄1, . . . , ρ̄n), then the Riemann problem



























∂tρ1 + ∂x(V1ψ(ρ1 + · · ·+ ρn)ρ1) = 0,
...

∂tρn + ∂x(Vnψ(ρ1 + · · ·+ ρn)ρn) = 0,

(ρ1(0, x), . . . , ρn(0, x)) =

{

(ρ̄1, . . . , ρ̄n), if x < 0,
(ρ̃1, . . . , ρ̃n), if x > 0,

is solved by a shock wave with speed

Λ = −
ψ(ρ̄1, . . . ρ̄n)(V1ρ̄1 + · · ·+ Vnρ̄n)

1 − (ρ̄1 + · · ·+ ρ̄n)
< 0.

The entropy admissibility of this wave is guaranteed by [5, Proposition 2.4].
The Jacobian matrix of the flux for (2) at a point ρ1 + · · · + ρn = 1 is







−V1ρ1 · · · −V1ρ1

. . .
. . . . . .

−Vnρn · · · −Vnρn,







and hence its eigenvalues are

λ1 = −(V1ρ1 + · · ·+ Vnρn), λ2 = 0, . . . , λn = 0.

Therefore the wave is of the first family. 2

We deduce the following corollary.

Corollary 2.1 Assume (MP1) and (MP2) with ψ(r) = 1 − r. The model
(2) satisfies properties P1, P2 and P3.
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Remark 1 In [15] a source destination model was introduced as a gener-
alization of the LWR model. This model is based on the assumption that
each vehicle has a preassigned path in the network. Thus the LWR model is
supplemented with some transport equations of the form

πit + v(ρ)πix = 0

where πi denotes the percentage of car traffic in a road with the same path.
In [24], the authors proved that the source destination model is a special

case of the multipopulation model. In fact, it is sufficient to consider the
variables ρi = ρπi.

3 Second order models

This part deals with second order models. More precisely, we consider the
Aw-Rascle-Zhang model, two phase-transition models, the Siebel-Mauser
balanced vehicular model and the Greenberg-Klar-Rascle multilane model.
As in the previous section, for each of these models, we consider a one-
dimensional road, modeled by R.

3.1 AW-Rascle-Zhang model

The Aw-Rascle-Zhang model in conservation form is given by the following
hyperbolic system







ρt + (y − ργ+1)x = 0,

yt +
(

y2

ρ
− yργ

)

x
= 0,

(5)

where ρ(t, x) denotes the density of cars at time t ≥ 0 and at position x ∈ R,
y = ρ(v + ργ) is a generalized momentum, v is the average velocity of cars
and γ > 1 is a constant.

Proposition 3.1 If ρ > 0, then system (5) is strictly hyperbolic. The eigen-
values of the Jacobian matrix of the flux are

λ1(ρ, y) =
y

ρ
− (γ + 1)ργ, λ2(ρ, y) =

y

ρ
− ργ . (6)

Moreover the first characteristic field is genuinely nonlinear, while the second
characteristic field is linearly degenerate.
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1

y

ρ

y = ργ+1
y = ρ

Figure 1: The domain D of equation (7).

For a proof, see [17]. Notice that the second eigenvalue λ2 is equal to the
velocity v of the cars. It is easy to see that both rarefaction and shock curves
of the first family are lines passing through the origin.

We assume that (ρ, y) takes value in the domain

D =
{

(ρ, y) ∈ R
+ × R

+ : ργ+1 ≤ y ≤ ρ
}

; (7)

see Figure 1. Thus, we are implicitly assuming that ρmax = 1.
The next proposition analyzes the solution when a traffic light is red. The

proof is contained in [16] or in [17, Proposition 6.2.1].

Proposition 3.2 Let (ρ0, y0) ∈ D, (ρ0, y0) 6= (0, 0). Consider system (5)
with the initial condition (ρ0, y0) for x < 0 and with the boundary condition
v = 0 at x = 0. This problem is solved with a shock wave of the first family
with negative speed. Moreover the trace (ρ̂, ŷ) at x = 0 of the solution is given
by the intersection between the curve of the first family through (ρ0, y0) and
the curve y = ργ+1 and satisfies ρ̂ > 0; see Figure 2.

Proposition 3.3 The Aw-Rascle-Zhang model satisfies property P1, but not
properties P2 and P3.

Proof. First, one can prove that the domain D is invariant with respect to
the solution to Riemann problems. Hence P1 easily follows.
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1 ρ

y

y = ρ

y = ργ+1

y =
yi,0

ρi,0
ρ

(ρ̂, ŷ)

(ρ0, y0)

Figure 2: Solution of the initial-boundary value problem of Proposition 3.2.

Consider now a point (ρ̄, ȳ) ∈ D such that 0 < ρ̄ < 1 and y = ργ+1. The
constant solution (ρ̄, ȳ) describes a situation in which cars are stopped, but
not at the maximum density. Thus P2 does not hold.

Finally, by Proposition 3.2, also P3 does not hold. 2

3.2 Hyperbolic Phase Transition Model

The hyperbolic phase transition model for traffic was introduced by Colombo
in 2002; see [7, 8]. The complete model is described by

Free flow Congested flow















(ρ, q) ∈ Ωf ,

ρt + [ρ · vf (ρ)]x = 0,

vf(ρ) =
(

1 − ρ
ρmax

)

· V,



























(ρ, q) ∈ Ωc,

ρt + [ρ · vc(ρ, q)]x = 0,

qt + [(q −Q) · vc(ρ, q)]x = 0,

vc(ρ, q) =
(

1 − ρ
ρmax

)

· q
ρ
,

(8)

where ρ is the car density, v is the car speed, q is a weighted flow, ρmax and
V are respectively the maximal vehicle density and speed and finally Q is the
weighted flow at the equilibrium value. Moreover the sets Ωf and Ωc (free
and the congested phases; see Figure 3) are defined by
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Ωf = {(ρ, q) ∈ [0, ρmax] × [0,+∞[ : vf(ρ) ≥ Vf , q = ρ · V } (9)

and

Ωc=

{

(ρ, q)∈ [0, ρmax]×[0,+∞[ :vc(ρ, q) ≤ Vc,
Q− −Q

ρmax
≤
q −Q

ρ
≤
Q+ −Q

ρmax

}

,

(10)
where Vf < V and Vc < V are threshold speed constants and the parameters
Q− ∈]0, Q[, Q+ ∈]Q,+∞[ depend on environmental conditions.

ρv

ρρ
0

ΩfΩf

Ωc

Ωc

ρmaxρmax

q

Q

Q−

Q+

Figure 3: Free and congested phases.

It is assumed that the various parameters are strictly positive and satisfy
the following conditions:

(PT1) 0 < Vc < Vf < V ;

(PT2) 0 < Q− ≤ Q ≤ Q+;

Condition (PT1) implies that, for every (ρ, q) ∈ Ωf ∪Ωc, the velocity v(ρ, q)
cannot take value in the not empty interval ]Vc, Vf [. Instead (PT2) says that
Q− and Q+ are the bounds for the weighted flow Q.

(PT3) Q+
−Q

ρmaxV
< 1;

(PT4) Vf = V−Q+/ρmax

1−(Q+
−Q)/(ρmaxV )

;

(PT5)
(

1 − Q+

ρmaxV

)

·
(

Q+

Q
− 1

)

< 1.

The following result about Riemann problems holds; see [7] for details
and proof.
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Proposition 3.4 Assume (PT1)–(PT5). Consider system (8) coupled with
the initial condition

{

(ρl, ql), if x < 0,
(ρr, qr), if x > 0,

(11)

where both (ρl, ql) and (ρr, qr) belong to Ωf ∪Ωc. The Riemann problem (8)-
(11) admits a self-similar solution with values in Ωf ∪ Ωc. In general, the
solution is formed by a wave in Ωf , by a phase-transition wave and by waves
in Ωc.

Proposition 3.5 Assume (PT1)–(PT5). The hyperbolic phase transition
model satisfies P1, P2 and P3.

Proof. If (ρ, q) ∈ Ωf ∪Ωc, then the velocity v of cars is positive; hence P1

holds. By (8), v = 0 implies ρ = ρmax, since q is strictly positive. Therefore
P2 holds. Let us now consider P3. Fix (ρl, ql) ∈ Ωf ∪ Ωc and consider the
Riemann problem for (8) with initial datum

{

(ρl, ql), if x < 0,
(ρmax, qr), if x > 0,

where qr ∈ [Q−, Q+]. We want to show that there exists qr ∈ [Q−, Q+] such
that this Riemann problem is solved by waves with negative speed; see [7]
for a detailed analysis. We have some different possibilities.

1. (ρl, ql) ∈ Ωc. In this case a Lax curve of the first family is produced; see
Figure 4. The wave is a shock, a contact discontinuity or a rarefaction
respectively when ql > Q , ql = Q or ql < Q.

2. (ρl, ql) ∈ Ωf , ql ≥ Q. In this case a single wave is produced, that is
a shock-like phase transition or a phase boundary acting as a contact
discontinuity; see Figure 5.

3. (ρl, ql) ∈ Ωf , (Q−−Q) ρ
ρmax

+Q ≤ ql < Q. In this case a phase transition
followed by a rarefaction wave is produced; see Figure 6.

4. (ρl, ql) ∈ Ωf , 0 ≤ ql < (Q− − Q) ρ
ρmax

+ Q. In this case either a
single phase transition wave is produced or a phase transition wave
followed by a rarefaction wave of the first family is produced. The two
possibilities depend on ql; see Figure 7.
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(ρl, ql)

(ρl, ql)

(ρl, ql)

Ωc

Ωf

ρmax

ρ

Q−

Q+

q

Q

Figure 4: The solution in case 1.

(ρl, ql)

Ωc

Ωf

ρmax

ρ

Q−

Q+

q

Q

Figure 5: The solution in case 2.
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(ρl, ql)

Ωc

Ωf

ρmax

ρ

Q−

Q+

q

Q

Figure 6: The solution in case 3.

(ρl, ql)

(ρl, ql)

Ωc

Ωf

ρmax

ρ

Q−

Q+

q

Q

Figure 7: The solution in case 4.
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Therefore P3 holds. 2

Remark 2 Notice that in presence of a traffic light the solution to the Rie-
mann problem is qualitative different respect to the LWR model. In fact for
the LWR model a single shock wave is produced, while in the phase-transition
model the Riemann problem can be solved by a phase-transition wave followed
by a rarefaction wave; see also [7].

3.3 The Aw-Rascle-Zhang model with phase transition

This model was introduced by Goatin [20] in 2005. In analogy with the
phase transition model proposed by Colombo, this model combines the LWR
model and the Aw-Rascle-Zhang model, in order to describe the free and the
congested flow. The model is the following one.

Free flow Congested flow














(ρ, v) ∈ Ωf ,

ρt + [ρ · v(ρ)]x = 0,

v(ρ) =
(

1 − ρ
ρmax

)

· V,











(ρ, v) ∈ Ωc,

ρt + [ρ · v]x = 0,

[ρ(v + p(ρ))]t + [ρv(v + p(ρ))]x = 0.

(12)
Here ρ and v denote respectively the density and the average speed of cars,
while V is the maximum speed, ρmax is the maximal possible car density and
p(ρ) is the “pressure”, as in the Aw-Rascle-Zhang model. Moreover the sets
Ωf and Ωc are defined by

Ωf =

{

(ρ, v) ∈ [0, Rf ] × [Vf , V ] : v(ρ) =

(

1 −
ρ

ρmax

)

V

}

(13)

Ωc = {(ρ, v) ∈ [0, ρmax] × [0, Vc] : p(r) ≤ v + p(ρ) ≤ p(ρmax)} , (14)

where Vf , Vc, Rf and r are threshold parameters.
This model inherits the properties of the Aw-Rascle-Zhang model. In

particular, the following proposition holds.

Proposition 3.6 The Aw-Rascle-Zhang model with phase-transition (12)
satisfies property P1, but not properties P2 and P3.

The proof is exactly the same of the proof of Proposition 3.3. These
characterizations are also contained in [20].
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3.4 Siebel-Mauser Balanced Vehicular Traffic model

The Siebel-Mauser balanced vehicular traffic (BVT) model generalizes the
Aw-Rascle-Zhang model and was introduced by Siebel and Mauser in [37].
The model is described by the hyperbolic system of balance laws

{

ρt + (vρ)x = 0,
(ρ(v − u(ρ)))t + (ρv(v − u(ρ)))x = b(ρ, v)ρ(u(ρ) − v),

(15)

where ρ is the density of traffic, v is the velocity, u(ρ) is the equilibrium
velocity and b(ρ, v) > 0 is a relaxation coefficient. We assume that 0 ≤ ρ ≤
ρmax and we put ρmax = 1. Moreover the function u(ρ) is strictly decreasing
and satisfies u(ρmax) = 0. We suppose for simplicity that u(ρ) = 1 − ρ.

Introducing the variable w = ρ(v − u(ρ)), the system becomes
{

ρt + (w + u(ρ)ρ)x = 0,

wt +
(

w
(

w
ρ

+ u(ρ)
))

x
= −b̃(ρ, w)w,

(16)

where b̃(ρ, w) = b
(

ρ, w
ρ

+ u
)

.

Proposition 3.7 If ρ 6= 0, then the system (16) is strictly hyperbolic with
eigenvalues λ1(ρ, w) = u(ρ) + w

ρ
+ ρu′(ρ) and λ2(ρ, w) = u(ρ) + w

ρ
.

Proof. The Jacobian matrix of the flux function for (16) is

(

u(ρ) + ρu′(ρ) 1

−w2

ρ2
+ u′(ρ)w 2w

ρ
+ u(ρ)

)

(17)

and so its eigenvalues are

λ1(ρ, w) = u(ρ) +
w

ρ
+ ρu′(ρ), λ2(ρ, w) = u(ρ) +

w

ρ
.

This completes the proof. 2

It is clear that P1 holds by construction. Moreover, the relaxation term
forces the system to reach the equilibrium configuration, i.e. v = u(ρ). This,
however, is not sufficient to deduce that ρ = ρmax from v = 0.

Proposition 3.8 The BVT model (15) satisfies property P1, but not prop-
erty P2.
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Property P3 is difficult to be verified, since system (15) is not in con-
servation form. Therefore we try to partially analyze P3, by using traveling
waves for (16).

Proposition 3.9 Consider ρl ∈ [0, ρmax]. There exist smooth real functions
ϕ : R → [0, ρmax] and ψ : R → [0, vmax] such that

1. limx→−∞ ϕ(x) = ρl and limx→+∞ ϕ(x) = ρmax;

2. limx→−∞ φ(x) = limx→+∞ φ(x) = 0;

3. the functions (ρ, w)(t, x) = (ϕ, ψ)(x − σt) provide a solution to (16),
where the speed σ < 0 is given by the Rankine-Hugoniot relation

σ = −
ρlu(ρl)

ρmax − ρl
. (18)

For a proof see [34, Theorem 4.1]. In view of this result, we conclude that
every equilibrium for (16) can be connected by a traveling wave with negative
speed with the equilibrium (ρmax, 0). We can not conclude that P3 holds,
but, at a red traffic light, the state goes asymptotically to the equilibrium
(ρmax, 0), i.e. P3 holds asymptotically.

3.5 The Greenberg-Klar-Rascle Multilane Model

Here we consider the multilane model, introduced by Greenberg, Klar and
Rascle in [19]; see also [18].

We consider an unidirectional one-dimensional road with n lanes. In a
multilane road, one can often observe different traffic behavior depending on
the density of traffic. When traffic level is low, changing lane and overcome
cars is easy and so the equilibrium speed for cars is high. When traffic level is
high, these actions become complicate and difficult, so that the equilibrium
speed for cars is low. The typical situation involves two distinct equilibria
for the average speed of cars. This is described by two functions w1(ρ) and
w2(ρ) defined on [0, ρmax] such that w1(ρ) > w2(ρ) for every ρ ∈ [0, ρmax[ and
w1(ρmax) = w2(ρmax) = 0. Interest situations are when w1 and w2 are linear
functions; see Figure 8.

When the density ρ is less than a critical value ρ̄1, then the average speed
is described by the function w1, while when the density ρ is greater than a
value ρ̄2, then the average speed is described by the function w2.
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w1(ρ)

w2(ρ)

Figure 8: Graphs of equilibrium velocity functions w1 and w2.

Defining the variable α = v −w1(ρ), the multilane model is described by
the system











ρt + (ρv)x = 0,

αt + vαx =

{

−α
ε
, ρ < R(v),

(w2(ρ)−w1(ρ))−α
ε

, ρ ≥ R(v),

(19)

where R(v) is a monotone non-decreasing function defined on R+ satisfying

R(v) = ρ̄2, ∀0 ≤ v ≤ w2(ρ̄2)

and
R(v) = ρ̄1, ∀v ≥ w1(ρ̄1),

and ε is a small positive constant.
Notice that (19) can be written in the form

{

ρt + (ρ (α + w1(ρ)))x = 0,

(ρα)t + (ρα (α + w1(ρ)))x = bε(ρ, α),
(20)

where

bε(ρ, α) =

{

−ρα
ε
, if ρ < R(α + w1(ρ)),

ρ(w2(ρ)−w1(ρ)−α)
ε

, if ρ ≥ R(α + w1(ρ)).
(21)

Therefore the multilane model (19) has exactly the same properties of
the BVT model, i.e. it has property P1, but not P2. Moreover it satisfies
the property P3 asymptotically.
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4 The Helbing third order model

A third order model was introduced in 1995 by Dirk Helbing [22]. He con-
sidered not only equations for density and velocity, but also for the variance
θ, defined as

θ(t, x) =

∫

R

P̃ (s, t, x) (v(t, x) − s)2
ds,

where P̃ is a velocity distribution; see [22] for a detailed description. The
θ variable becomes important to describe and predict traffic jams. In fact
fast increment of the variance describes queue formation in car traffic. The
model is the following one.







ρt + (vρ)x = 0,
vt + vvx + 1

ρ
(ρθ)x = 1

τ
(ve(ρ) − v) + µ

ρ
vxx,

θt + vθx + 2θvx = 2µ
ρ
(vx)

2 + k
ρ
θxx + 2

τ
(θe(ρ) − θ),

(22)

where θe and ve are given smooth functions of the density ρ, while µ, k, τ are
positive constants. The term 2

τ
(θe(ρ) − θ) results from the drivers’ attempt

to drive with their desired velocities and from drivers’ interactions, i.e. from
deceleration in a situation when a fast car can not overtake a slower one.

In this section we consider the following assumptions:

(T1) ρ ∈ [0, 1], i.e. the maximum density ρmax is 1;

(T2) ve : [0, 1] → R+ is a bounded, strictly decreasing function such that
ve(1) = 0;

(T3) θe : [0, 1] → R+ is a bounded, strictly decreasing function such that
θe(1) = 0.

We note that, for general initial data and for general functions ve and θe,
P1 does not hold. However, under reasonable assumptions, Helbing showed
that P1 is satisfied; see [22] for details.

4.1 Preliminary results

This subsection contains some preliminary results about the third order
model (22). We start proving that, for classical constant solutions, zero
velocity implies maximum density.
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Proposition 4.1 Let (T1), (T2) and (T3) hold. Let A be an open subset
of ]0,+∞[×R and let (ρ, v, θ) be a classical smooth solution to (22) in A.
Assume that v = 0 in A and ρ = c in A, where c is a strictly positive
constant. Then c = 1, i.e. the density is the maximum possible in A.

Proof. By assumptions, in A system (22) reduces to
{

θx = 1
τ
ve(c),

θt = k
c
θxx + 2

τ
(θe(c) − θ) .

Differentiating the first equation with respect to x, we deduce that θxx = 0
in A, and so

{

θx = 1
τ
ve(c),

θt = 2
τ

(θe(c) − θ) .

Differentiating the first equation with respect to t and the second one with
respect to x, we obtain the system

{

θxt = 0,

θtx = − 2
τ2 ve(c).

This implies that ve(c) = 0 and so c = 1 by the assumptions on the function
ve. 2

Proposition 4.2 Let (T1), (T2) and (T3) hold. In general P2 does not
hold for the Helbing-third order model.

Proof. Define A =]0,+∞[×R and assume that τ = k = 1. If v = 0 in A,
then the system (22) reduces to















ρt = 0,

1
ρ
(ρθ)x = ve(ρ),

θt = 1
ρ
θxx + 2(θe(ρ) − θ).

(23)

Stationary solutions to system (23) satisfy
{

1
ρ
(ρθ)x = ve(ρ),

1
ρ
θxx + 2(θe(ρ) − θ) = 0.

(24)
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Calling z1 = ρ, z2 = θ and z3 = θx, we have







z′1 = z1(ve(z1)−z3)
z2

,

z′2 = z3,

z′3 = −2z1 (θe(z1) − z2) .

(25)

The previous system admits a unique solution, at least locally in x, for every
initial datum (z1(0), z2(0), z3(0)) with z2(0) 6= 0; hence the hypothesis v = 0
in A does not imply that the density of cars is the maximum possible; i.e.
P2 does not hold. 2

Remark 3 We observe that, in Proposition 4.1, the hypothesis that ρ is
constant in A is fundamental in order to conclude that the density is the
maximum possible.

4.2 Traveling waves

In this section we look for traveling wave solutions to (22) of the form

(ρ(t, x), v(t, x), θ(t, x)) = (ψ1(x− c1t), ψ2(x− c2t), ψ3(x− c3t))

with strictly negative speeds c1, c2, c3 and with the boundary condition at
infinity

lim
x→+∞

ψ1(x) = 1, lim
x→+∞

ψ2(x) = 0, lim
x→+∞

ψ3(x) = 0. (26)

Then the functions ψ1, ψ2 and ψ3 satisfy the ordinary differential equa-
tions














−c1ψ
′

1 + (ψ1ψ2)
′ = 0,

−c2ψ1ψ
′

2 + ψ1ψ2ψ
′

2 + (ψ1ψ3)
′ = ψ1

τ
(ve(ψ1) − ψ2) + µψ′′

2 ,

ψ1ψ2ψ
′

3 − c3ψ1ψ
′

3 + 2ψ1ψ
′

2ψ3 = 2µ(ψ′

2)
2 + kψ′′

3 + 2ψ1

τ
(θe(ψ1) − ψ3).

(27)

Introducing the variables z1 = ψ1, z2 = ψ2, z3 = ψ′

2, z4 = ψ3, z5 = ψ′

3, we
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derive the system










































z1 = −c1
z2−c1

,

z′2 = z3,

µz′3 = c1c2
z2−c1

z3 −
c1z2z3
z2−c1

+ c1z3z4
(z2−c1)2

− c1z5
z2−c1

+ 1
τ

c1
z2−c1

(

ve

(

−c1
z2−c1

)

−z2

)

,

z′4 = z5,

kz′5 = c1c3z5
z2−c1

− c1z2z5
z2−c1

− 2c1z3z4
z2−c1

− 2µz2
3 + 2

τ
c1

z2−c1

(

θe

(

− c1
z2−c1

)

− z4

)

.

(28)

All equilibria for the previous system are given by the relations






























z2 = ve

(

− c1
z2−c1

)

,

z3 = 0,

z4 = θe

(

− c1
z2−c1

)

,

z5 = 0.

(29)

Solutions to (29) clearly depend on the function ve and θe. The next
proposition shows that, for special functions ve, there exist equilibria where
the first component could be chosen in a suitable interval.

Proposition 4.3 Fix 0 < ρ̄ < 1 and consider any bounded and strictly
positive function ve such that

ve(ρ) = c1

(

1 −
1

ρ

)

(30)

for every ρ ∈ [ρ̄, 1]. Then, for every ρ̃ ∈ [ρ̄, 1], there exists an equilibrium
(z2, z3, z4, z5) for system (28) such that z2 = ve(ρ̃).

Proof. If ρ̃ ∈ [ρ̄, 1], then z2 = ve(ρ̃) = c1

(

1 − 1
ρ̃

)

and so ve

(

− c1
z2−c1

)

=

c1

(

1 + z2−c1
c1

)

= z2. This completes the proof. 2

Remark 4 Notice that the number of equilibria for system (27) could be not
countable. Indeed, if the function ve is defined by

ve(ρ) =

{

4c1ρ− 3c1, if 0 ≤ ρ ≤ 1
2
,

− c1
ρ

+ c1, if 1
2
≤ ρ ≤ 1,

(31)
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−c1

−3c1
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Figure 9: The equilibrium function of equation (31).

then every z2 ∈ [0,−c1] satisfies

z2 = ve

(

−
c1

z2 − c1

)

;

see Figure 9.

If the function ve is linear, then the number of equilibria of (29) is finite.

Proposition 4.4 If v′e(ρ) is a negative constant, then equation

z2 = ve

(

−
c1

z2 − c1

)

has at most three solutions.

Proof. Define the function

g(x) := ve

(

−
c1

x− c1

)

− x.

We have

g′(x) =
c1

(x− c1)2
v′e

(

−
c1

x − c1

)

− 1.
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By hypothesis, we deduce that

g′(x) = −
c1

(x− c1)2
M − 1,

where M > 0. Thus g′(x) > 0 if and only if

c1 −
√

−c1M < x < c1 +
√

−c1M,

and this permits to conclude the proof. 2

Consider now the equilibrium (0, 0, 0, 0), which corresponds to zero ve-
locity of cars. The linearized system around this equilibrium is given by









z2
z3
z4
z5









′

= A(0,0,0,0) ·









z2
z3
z4
z5









where the matrix A(0,0,0,0) is











0 1 0 0
c1−v′e(1)
µτc1

− c2
µ

0 1
µ

0 0 0 1

−2θ′e(1)
kτc1

0 2
kτ

− c3
k











.

The characteristic polynomial of A(0,0,0,0) is

pA(0,0,0,0)
(λ) = λ4 + aλ3 + bλ2 + cλ+ d

where

a =
kc2 + µc3

µk

b = −
2µc1 + kc1 − kv′e(1) − c1c2c3τ

µkτc1

c =
−2c1c2 − c1c3 + c3v

′

e(1) + 2θ′e(1)

µkc1τ

d =
2c1 − 2v′e(1)

µkc1τ 2
.
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4.2.1 Explicit system

The choice of the equilibrium function ve influences the equilibria of the
system (28). This implies that property P3, from the asymptotically point
of view, could depend on the function ve. Let us consider the particular case,
where θe(ρ) = ve(ρ) = 1 − ρ, τ = µ = k = 1, c1 = c2 = c3 = −1

2
. We these

assumptions, system (28) reads































z′2 = z3,

z′3 = 1
4z2+2

z3 + z2z3
2z2+1

− 2z3z4
(2z2+1)2

+ z5
2z2+1

− z2(1−2z2)
(2z2+1)2

,

z′4 = z5,

z′5 = z5
4z2+2

+ z2z5
2z2+1

+ 2z3z4
2z2+1

− 2z2
3 −

2
2z2+1

(

1 − z4 −
1

2z2+1

)

.

(32)

We have the following proposition.

Proposition 4.5 The previous system has exactly two unstable equilibria
(0, 0, 0, 0) and

(

1
2
, 0, 1

2
, 0

)

. The stable and unstable manifold for (0, 0, 0, 0)
have dimension respectively 1 and 3. The stable and unstable manifold for
(

1
2
, 0, 1

2
, 0

)

have dimension respectively 2 and 2.

Proof. The characteristic polynomial of the linear system around (0, 0, 0, 0)
is

p(0,0,0,0)(λ) = λ4 − λ3 −
3

4
λ2 +

9

2
λ− 2.

If λ1, λ2, λ3, λ4 are the roots of this polynomial, then λ1 < 0 and λ2 > 0 are
real, while λ3, λ4 ∈ C \ R with strictly positive real part.

The characteristic polynomial of the linear system around
(

1
2
, 0, 1

2
, 0

)

is

p( 1
2
,0, 1

2
,0)(λ) = λ4 −

3

4
λ3 −

11

8
λ2 +

5

8
λ+

1

4
.

If λ1, λ2, λ3, λ4 are the roots of this polynomial, then λ1, λ2, λ3, λ4 ∈ R,
λ1, λ2 < 0 and λ3, λ4 > 0. 2

Corollary 4.1 There exist at most two heteroclinic orbits for system (32)
connecting the equilibrium

(

1
2
, 0, 1

2
, 0

)

to the equilibrium (0, 0, 0, 0).
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Proof. By Proposition 4.5, the stable manifold for (0, 0, 0, 0) has dimension
1; hence there are at most two non constant solutions to (32), which tend
to (0, 0, 0, 0) when time goes to +∞. This observation concludes the proof. 2

Corollary 4.2 Fix (z̄2, z̄3, z̄4, z̄5) with z̄2 ≥ 0. If (z̄2, z̄3, z̄4, z̄5) 6=
(

1
2
, 0, 1

2
, 0

)

and (z̄2, z̄3, z̄4, z̄5) 6= (0, 0, 0, 0), then there are not traveling waves for sys-
tem (32) connecting (z̄2, z̄3, z̄4, z̄5) to (0, 0, 0, 0); i.e. the property P3 does
not hold asymptotically.

Proof. The proof easily follows from the fact that the system (32) has exact
two equilibria. 2

5 Conclusions

In next table we resume the analysis of the properties for the various consid-
ered traffic models.

MODEL P1 P2 P3

Lighthill-Whitham-Richards model yes yes yes
Multipopulation model yes yes yes
Aw-Rascle-Zhang model yes no no
Colombo phase transition model yes yes yes
Goatin phase transition model yes no no
Siebel-Mauser BVT model yes no asymptotically

Greenberg-Klar-Rascle multilane model yes no asymptotically

Helbing third order model yes no –

The main result is the following: the LWR model, the multipopulation
models and the Colombo’s phase transition hyperbolic model are the most
appropriate to model urban traffic, since they satisfy all the three basic prop-
erties. However, also the Siebel-Mauser BVT model and the Greenberg-Klar-
Rascle multilane one share at least two properties. Finally, the debate on the
Helbing model is more delicate, since the properties depend on the choice of
some functions. However, property P3 is hardly verified.
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