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Abstract

We consider a model for supply chains governed by partial differen-
tial equations. The mathematical properties of a continuous model are
discussed and existence and uniqueness is proven. Moreover, Lipschitz
continuous dependence on the initial data is proven. We make use of
the front tracking method to construct approximate solutions. The
obtained results extend the preliminary work of [12].
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1 Introduction

Supply chain modeling is characterized by different mathematical approaches :
on the one hand there are discrete event simulations based on considerations
of individual parts; on the other hand, continuous models like [1, 2, 3] us-
ing partial differential equations have been introduced. We consider supply
chain modeling based on the latter – the continuous models. Recently those
models based on scalar conservation laws have been reformulated in the
framework of network models where the dynamics on the arcs is governed
by a partial differential equation, see [12]. This approach is inspired by other
recent discussions on networks, see e.g. [4, 8, 13, 14].

We recall the basic supply chain model under consideration: a supply
chain network consists of connected suppliers which are going to process
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parts. Further, each supplier is consists of a processor for assembling and
construction and a buffer for unprocessed parts, called queue. We define
now

Definition 1.1 (Network definition) A supply chain network is a finite,
connected directed graph consisting of a finite set of arcs J and a finite
set of vertices V. Each supplier j is modelled by an arc j, which is again
parameterized by an interval [aj , bj ].

Each processor is characterized by a maximum processing capacity µj ,
its length Lj and the processing time Tj . The rate Lj/Tj describes the
processing velocity and we assume for simplicity that Lj/Tj = 1 for all j. To
model the evolution of parts inside the processor we introduce the function
ρj(x, t), i.e., the density of parts in processor j at point x and time t. Now,
the dynamics of each processor on an arc j are governed by an advection
equation as in [2]:

∂tρj(x, t) + ∂x min{µj ,
Lj

Tj
ρj(x, t)} = 0 ∀x ∈ [aj , bj ], t ∈ R+(1.1a)

ρj(x, 0) = ρj,0(x) ∀x ∈ [aj , bj ]. (1.1b)

Equation (1.1) can be derived from a discrete event simulation ([2]) and
allows for the following interpretation: The parts are processed with velocity
Lj/Tj but with a maximal flux of µj . The dynamical behavior of the queues
is discussed in detail in the following sections. Roughly speaking, if the
inflow is greater than the maximum possible outflow then the queue increases
proportionally to the difference of the two, while it decreases in the opposite
case.

First, in Section 2, we consider a chain–like network geometry as in
Figure 1 for which the discussion below simplifies. Then, in the following
section, we turn to the situation of arbitrary networks in particular those
with vertices having more than two connected arcs.

Our main achievement is the extension of results proposed in [12]. The
correct space to be considered is that of couples (ρj , qj): density of parts
and queue buffer occupancy. We prove existence and uniqueness of weak
solutions for a general network of supply chains and BV initial data. The
densities ρj are Lipschitz continuous in time w.r.t. the L1 metric, while the
queues buffer occupancies qj are absolutely continuous.
Moreover, we prove Lipschitz continuous dependence on the initial data.
This, in turn, permits to extend the corresponding semigroup trajectories
to L∞ initial data.
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The main idea of the proof is to construct approximated solutions by Front-
Tracking [5] and derive bounds on the total variation by a careful estimate
of the interactions at the vertices of the network. The proof of Lipschitz
dependence uses the approach as in [6].

2 Consecutive processors

In this section we recall the supply chain network model introduced and
investigated in [12] and extend the existence results obtained therein.

First, we consider the case where each vertex is connected to exactly
to one incoming arc and one outgoing arc and we assume that the arcs are
consecutively labeled, i.e., arc j is connected to arc j+1, and that bj = aj−1,
see also Figure 1.
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Figure 1: Example of a simple network structure

2.1 Modelling and previous results

As in the introduction, the supplier j is defined by a queue j and a processor
j. Physically, the queue is located in front of each processor, i.e., at x = aj .
To avoid technical difficulties, we assume that the first supplier consists of
a processor only and the last has infinite length, so a1 = −∞ and bN = +∞
for the first and, respectively, the last supplier in the supply chain.

In addition to equation (1.1), the queue buffer occupancy in front of each
processor is modelled as time-dependent function t → qj(t). If the capacity
of processor j − 1 and the demand of processor j are not equal, the queue
qj in- or de-creases its buffer. Mathematically, this implies that each queue
qj satisfies the following equation:

∂tqj(t) = fj−1(ρj−1(bj−1, t))− fj(ρj(aj , t)), j = 2, . . . , N. (2.1)

Last, a reasonable mathematical condition for the boundary values for out-
going arcs j is given by (see [12]):

fj(ρj(aj , t)) =

{
min{fj−1(ρj−1(bj−1, t)), µj} qj(t) = 0
µj qj(t) > 0

(2.2)
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This allows for the following interpretation: If the outgoing buffer is empty,
we process as many parts as possible but at most µj . If the buffering queue
contains parts, then we process at the maximal possible rate, namely again
µj . Finally, the supply chain model is a coupled system of partial and ordi-
nary differential equations on a network given by (1.1, 2.1 and 2.2).

We recall some preliminary facts from [12].
Note that due to the very special flux function

fj(x) := min{µj ;Lj/Tjρ}, (2.3)

a Riemann problem for (1.1) and (x, t) ∈ R×R+ admits one of the following
two solutions. Let ρj,0(x) = ρl for x < 0 and ρj,0 = ρr for x ≥ 0. If ρl < ρr

then the solution ρj is given by

ρj(x, t) =

{
ρl −∞ < x

t ≤
fj(ρr)−fj(ρl)

ρr−ρl

ρr
fj(ρr)−fj(ρl)

ρr−ρl
< x

t < ∞ (2.4)

If, on the contrary, ρl > ρr, then the following happens. If either ρl ≤ µj or
if ρr ≥ µj then the solution is given by (2.4). Otherwise (i.e. if ρr < µj < ρl)
we obtain the solution given by

ρ(x, t) =





ρl −∞ < x
t ≤

fj(ρl)−µj

ρl−µj

µj
fj(ρl)−µj

ρl−µj
< x

t ≤
µj−fj(ρr)

µj−ρr

ρr
µj−fj(ρr)

µj−ρr
< x

t < ∞
(2.5)

Notice that the RHS of the first two inequalities is always 0 or 1.
We can introduce the following definition:

Definition 2.1 (Network solution) A family of functions {ρj , qj}j∈J is
called an admissible solution for a network as in Figure 1 if, for all j, ρj is
a weak entropic solutions ([16]) to (1.1), qj is absolutely continuous and, in
the sense of traces for ρjs, equations (2.1) and (2.2) hold for a.e. t.

For the particular situation of a single vertex v ∈ V with incoming arc j = 1
and outgoing arc j = 2 and constant initial data ρj,0(x) ≤ µj , there exists
an admissible solution {ρ1, ρ2, q2}. The solution has the following explicit
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form

ρ1(x, t) = ρ1,0 (2.6a)

ρ2(x, t) =





f1(ρ1,0) < µ2





ρ1,0 0 ≤ (x− t0)/t < 1 = f2(µ2)−f2(ρ1,0)
µ2−ρ1,0

µ2 1 ≤ (x− t0)/t and x/t < 1
ρ2,0 1 ≤ x/t < ∞

f1(ρ1,0) ≥ µ2

{
µ2 0 ≤ x/t < 1 = f2(µ2)−f2(ρ2,0)

µ2−ρ2,0

ρ2,0 1 ≤ x/t < ∞

(2.6b)

q2(t) = q2,0 +
∫ t

0
f1(ρ1,0)− f2(ρ2(a2+, τ))dτ (2.6c)

wherein t0 = q2,0/ (µ2 − f1(ρ1,0)) . For a network as in Figure 1, for ini-
tial data {ρj,0(x)}j where each ρj,0 is a step function, and for initial values
qj(0) = 0, there exists an admissible solution {ρj , qj}j to the network prob-
lem (1.1,2.1, 2.2), see [12]. The construction of the solution is based on
wave- or front–tracking (see below and in [9, 5, 15]. For applications of this
method in context with network problems we also refer to [14, 8].

2.2 Wave front tracking approximations

To start, we introduce a equi–distant grid (iδ)Nx
i0 such that 0 ≤ (iδ) ≤

max{µj : j ∈ J } and such that ∀j∃ij : iδµj . Here, it is implicitely assumed
that µi/µj is rational. We approximate the initial data by step functions
ρδ

j,0 taking values in the set {iδ : i0, . . . , Nx}. Then each Riemann problem
inside an arc or at a vertex is solved, obtaining various traveling discontinu-
ities. If discontinuities collide, then the collision can be resolved by either
solving a Riemann problem inside the arc j (see equations (2.4),(2.5)) or as
a collision with a vertex (see equations (2.6)). In both cases we obtain new
discontinuities propagating until the next collision.
At the same time, an evolution of the queues buffers qj are automatically
defined when solving the Riemann problems at vertices.
This construction guarantees that the solution on arcs takes values only in
the set {iδ : i = 0, . . . , Nx} and we obtain a wave front tracking approximate
solution (denoted by (ρδ, qδ) := {(ρδ

j , q
δ
j )}j) consisting of a set of moving dis-

continuities along the intervals [aj , bj ] and queues buffers evolutions.
As usual ([5],[10]), to guarantee the good definition of wave front tracking

approximate solutions and, passing to the limit, prove existence of solutions
in the sense of Definition 2.1, three basic estimates are in order:

1. Estimate on the number of waves;
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2. Estimate on the number of interactions (between waves and of waves
with queues);

3. Estimate on total variation of solutions for ρj ;

Moreover, in our case, we need to prove some compactness of the sequence
qδ
j in an appropriate space.

It is easy to check that every collision inside an arc decreases the number of
waves, while the interactions with a vertex may produce two new waves, c.f.
equation (2.6). Also, the characteristic velocity of waves is always positive
and is bounded from above, then the first two estimates are readily obtained,
see [12]. Therefore the construction of wave front tracking approximations
is well–defined up to any given time T.

2.3 Total variation estimates on densities

Here, we provide total variation estimates on ρδ
j (i.e. along wave-front track-

ing approximate solutions.) This will imply the existence of an admissible
solution for BV-initial data ρj,0.

First, we discuss the case of initial data ρj,0 additionally satisfying next
assumption (K):

(K) For every j the initial datum satisfies ρj,0 ≤ µj .

The above construction guarantees that (K) remains valid for every time
along wave front tracking approximate solutions.

Each ρδ
j(x, t) is a piecewise constant function in x and thus will de-

fine a number of constant states ρδ
j,i, i = 1, . . . , Nj , where we assume that

ρδ
j(aj , ·) = ρδ

j,1 and so forth. We define the total variation of the flux on the
network as

T.V.(f(ρδ)) =
∑

j∈J
T.V.(fj(ρδ

j(·, t))) =
∑

j∈J

Nj−1∑

i1

|fj(ρδ
j,i)− fj(ρδ

j,i+1)| (2.7)

Note that, thanks to assumption (K), a bound on T.V.(fj(ρδ
j(·, t))) provides

also a bound on T.V.(ρδ
j(·, t)), since ρδ

j,i ≤ µj for all j, i. Furthermore,
T.V.(f(ρδ)) does not increase, when discontinuities collide inside an arc j,
see [5]. Next, we discuss the collision of a discontinuity with a vertex.

Lemma 2.2 Assume a single vertex with incoming arc j = 1 and outgoing
arc j = 2. Furthermore, assume constant states ρj,0, j = 1, 2 at the vertex
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and consider a discontinuity colliding at time t0. Denote the new solution at
the vertex after the collision by ρ̄j. Assume no more collision of discontinu-
ities happens until t∗. Then, for all t0 < t < t∗,

2∑

j=1

T.V.(fj(ρj(·, t))) + |∂tq2(t)| ≤
2∑

j=1

T.V.(fj(ρj(·, t0))) + |∂tq2(t0)| (2.8)

Proof. By construction the colliding discontinuity has to arrive from arc
j = 1 and therefore the total variation of the flux on this arc decreases by
|f1(ρ̄1)−f1(ρ1,0)|. On the outgoing arc j = 2 we distinguish two cases. First,
assume that f2(ρ2,0) = f1(ρ1,0). Then, due to (2.1) we have ∂tq2(t0) = 0.
If f1(ρ̄1) ≤ µ2, then f2(ρ̄2) = f1(ρ̄1) and (2.8) holds. If on the other hand,
f1(ρ̄1) > µ2, then due to (2.2), f2(ρ̄2) = µ2 and again (2.8) holds, since for
t > t0 :

|f1(ρ̄1)− f1(ρ1,0)| = |µ2 − f1(ρ1,0)|+ |f1(ρ̄1)− µ2|
= |f2(ρ̄2)− f2(ρ2,0)|+ |∂tq2(t)|.

In the second case, we assume f2(ρ2,0) = µ2. Then,

|∂tq2(t0)| = |f1(ρ1,0)− µ2|
and we distinguish two more subcases depending whether the queue is in-
creasing or decreasing after the collisions. First, assume f1(ρ̄1) ≥ µ2, i.e.,
the queue q2 is increasing with

|∂tq2(t)| = f1(ρ̄1)− µ2

and

f2(ρ̄2) = f2(ρ2,0) = µ2. (2.9)

Still (2.8) holds, since

|f1(ρ1,0)− f1(ρ̄1)|+ |∂tq2(t0)| ≥ |∂tq2(t)|
for t > t0. Second, assume f1(ρ̄1) < µ2, i.e., the queue q2 is decreasing. Let
t̄ be such that q2(t̄) = 0. Then (2.8) holds since for t < min{t̄, t∗}:

T.V.(f2(ρ̄2(·, t))) = 0

and

|f1(ρ̄1)− f1(ρ1,0)|+ |f1(ρ1,0)− µ2| ≥ |µ2 − f1(ρ̄1)|
= |∂tq2(t)|.
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If t̄ < t∗ we obtain a new travelling discontinuity on the outgoing arc j = 2
for times t > t̄ when the queue q2 becomes empty: f2(ρ̄2(a2+, t)) = f1(ρ̄1)
and ∂tq(t) = 0 for t > t̄. Then, (2.8) still holds, since

T.V.(f2(ρ2(·, t))) + |∂tq2(t)|
is constant for this interaction. This finishes the proof. ¤

Summarizing, we conclude that for all δ > 0 the following holds for all
t > 0:

N∑

j=1

T.V.(ρδ
j(·, t)) +

N∑

j=2

|∂tq
δ
j (t)| ≤

N∑

j=1

T.V.(ρδ
j,0(·)) +

N∑

j=2

|∂tq
δ
j (0)| (2.10a)

and ρδ
j(x, t) ≤ max

j
µj ∀j, x. (2.10b)

2.4 Total variation estimates on queues buffers

Let us now pass to estimate the total variation of ∂tqj :

Lemma 2.3 Assume a single vertex with incoming arc j = 1 and outgoing
arc j = 2 (of infinite length). Furthermore, assume constant states ρj,0, j =
1, 2 at the vertex and consider a discontinuity colliding at time t0. Denote
the new solution at the vertex after the collision by ρ̄j. Assume no more
collision of discontinuities happens until t∗. Then, for all t0 < t < t∗,

T.V.(∂tq2, [t0, t]) ≤ 2 |f1(ρ̄1)− f1(ρ1,0)|+ |∂tq2(t0)|. (2.11)

Proof. The interactions are clearly the same examined in Lemma 2.2.
First, assume that f2(ρ2,0) = f1(ρ1,0). Then, due to (2.1) we have ∂tq2(t0) =
0. If f1(ρ̄1) ≤ µ2, then f2(ρ̄2) = f1(ρ̄1) and ∂tq2(t) = 0, thus (2.11) holds
because the left hand side vanishes.
If on the other hand, f1(ρ̄1) > µ2, then:

|f1(ρ̄1)− f1(ρ1,0)| = |f2(ρ̄2)− f2(ρ2,0)|+ |∂tq2(t)| ≥ |∂tq2(t)|,
thus (2.11) holds because ∂tq2(t0) = 0.
In the second case, we assume f2(ρ2,0) = µ2. Then,

∂tq2(t0) = f1(ρ1,0)− µ2, ∂tq2(t0+) = f1(ρ̄1)− µ2. (2.12)

If the queue is increasing after the interaction, then:

T.V.(∂tq2(t), [t0, t]) = |f1(ρ1,0)− µ2 − (f1(ρ̄1)− µ2)| = |f1(ρ1,0)− f1(ρ̄1)|.
(2.13)
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Second, assume f1(ρ̄1) < µ2, i.e., the queue q2 is decreasing. Let t̄ be such
that q2(t̄) = 0. For t < min{t̄, t∗}, (2.13) still holds, thus we conclude in
the case t∗ ≤ t̄. If, on the contrary, t̄ < t∗ we obtain a new travelling
discontinuity on the outgoing arc j = 2 for times t > t̄ when the queue q2

becomes empty: f2(ρ̄2(a2+, t)) = f1(ρ̄1) and ∂tq2(t) = 0 for t > t̄. Then,

T.V.(∂tq2(t), [t0, t]) = |∂tq2(t0)− ∂tq2(t0+)|+ |∂tq2(t0+)− ∂tq2(t)|
≤ |f1(ρ1,0)− f1(ρ̄1)|+ |f1(ρ̄1)− µ2| ≤

2 |f1(ρ1,0)− f1(ρ̄1)|+ |∂tq2(t0)|.
¤

We can now reason as follows. Define:

η = min
j
|bj − aj |

the minimum length of a supplier and set

TV k
j = T.V.(fj(ρδ

j(·, kη))), qk
j = ∂tq

δ
j (kη).

Then by Lemmas 2.2 and 2.3, we get:

T.V.(∂tq
δ
j , [kη, (k + 1)η]) ≤ 2TV k

j−1 + qk
j ,

qk
j + TV k

j−1 + TV k
j ≤ qk−1

j + TV k−1
j−1 + TV k−1

j .

Moreover, defining by T̃ V
k

N the variation in the flux produced on the last
supplier by the queue qδ

N on the time interval [kη, (k + 1)η], we get:

TV k
1 ≤ TV 0

1 , qk
N + TV k

N−1 + T̃ V
k

N ≤ qk−1
N + TV k−1

N−1 + T̃ V
k−1

N .

Therefore, summing up on j and k we get the following:

N∑

j=2

T.V.(∂tq
δ
j , [0,Kη]) =

N∑

j=2

K−1∑

k=0

T.V.(∂tq
δ
j , [kη, (k + 1)η]) ≤

N∑

j=2

K−1∑

k=0

(
2TV k

j−1 + qk
j

)
≤ K

N∑

j=2

(
2TV 0

j−1 + q0
j

)
.

Restating:

N∑

j=2

T.V.(∂tq
δ
j , [0,Kη]) ≤ K

N∑

j=2

(
2 T.V.(ρδ

j−1,0(·)) + |∂tq
δ
j (0)|

)
∀t. (2.14)
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2.5 Existence of a network solution for BV initial data

For existence of solutions, we consider the space the space of data (ρ, q) on
the supply chain with the norm

‖(ρ, q)‖ =
∑

j

‖ρj‖L1 +
∑

j

|qj |. (2.15)

Then, we want to find a solution in the space Lip([0, T ], L1((aj , bj))) for the
ρ components and in the space W 1,1([0, T ]) for the q components.

Due to the the special flux function, we obtain discontinuities travelling
with speed v at most equal to 1. Therefore, we have for t1 < t2 and every j

∫ bj

aj

|ρδ
j(x, t1)− ρδ

j(x, t2)|dx ≤ T.V.(ρδ
j(·, t1))|t1 − t2|+

∫ t2

t1

|f(ρδ
j(aj , t))| dt.

(2.16)
The estimate (2.16) guarantees Lipschitz dependence w.r.t. time in L1,
while (2.10) ensures uniform BV bounds. Therefore, by using standard
techniques [5, 17], one can show, that for δ → 0 a subsequence of ρδ converges
in L1 provided that T.V.(ρj,0(x)) is bounded. Furthermore, the limit solution
ρ∗ is a weak entropic solution for (1.1).

For what concerns qj , we observe that ∂tqj are of bounded variation.
Again by BV compactness, we have that ∂tqj converges by subsequences in
BV, in particular almost everywhere and strongly in L1. Thus qj converges
uniformly. Finally qj converges by subsequences in W 1,1.

Remark 2.4 Notice that we can pass to the limit using the uniform Lip-
schitz continuities of qj. In fact, by definition, Lipt(qj) ≤ max{µj−1, µj}.
Thus we can pass to the limit obtaining Lipschitz continuous functions with
the same bound on the Lipschitz constant.
Also, we can pass to the limit using estimate (2.10) and Ascoli-Arzelá The-
orem, but in that case we can not guarantee that ∂tqj is in BV and that qj

is in W 1,1.

Consider now the case in which (K) is violated. For every j, the data
entering the supplier from aj satisfies (K). Consider the generalized charac-
teristic πj(t) starting from aj at time 0 and let τj (possibly +∞) the time
in which it reaches bj . We can divide the supplier in two regions:

Aj = {(t, x) : x ≤ πj(t)}, Bj = {(t, x) : x > πj(t)},

see Figure 2.
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j

j
j

τ j

x

t

Figure 2: Regions Aj and Bj .

Aj is the region influenced by the incoming flux from aj , while Bj is
the region where ρ depends only on the initial datum ρj,0. Notice that for
t ≥ τj , Bj ∩ {(t, x) : aj ≤ x ≤ bj} = ∅. On Aj , (K) holds true thus also the
estimate (2.10) holds. While on Bj the solution is the same as the solution
to a scalar problem, thus the total variation is decreasing. We thus reach
again compactness in BV and the existence of a solution.

Finally, we thus get the following:

Proposition 2.5 If T.V.(ρj,0(x)) ≤ C for some C > 0, then there exists a
solution (ρ, q) on the network, such that (ρ, q) ∈ Lip([0, T ], L1((aj , bj))) ×
W 1,1([0, T ]), ρ is BV for every time and ∂tqj is in BV.

2.6 Uniqueness and Lipschitz continuous dependence.

We want to prove uniqueness and Lipschitz continuous dependence on the
space of data (ρ, q) on the supply chain with the norm (2.15). We use the
same approach of [6, 10], thus consider a Riemannian metric on this space,
where the tangent vectors are considered only for ρj piecewise constant
functions.

Let us first focus on the ρjs: a ”generalized tangent vector” consists of
two components (v, ξ), where v ∈ L1 describes the L1 infinitesimal displace-
ment, while ξ ∈ Rn describes the infinitesimal displacement of discontinu-
ities. A family of piecewise constant functions θ → ρθ, θ ∈ [0, 1], with the
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same number of jumps say at the points xθ
1 < ... < xθ

M , admits a tangent
vector is the following functions are well defined (see Figure 3)

L1 3 vθ(x)=̇ lim
h→0

ρθ+h(x)− ρθ(x)
h

,

and also the numbers

ξθ
β=̇ lim

h→0

xθ+h
β − xθ

β

h
, β = 1, ..., M.

β

ξ

x

ρ

ρ

θ

θ+h

v

Figure 3: Construction of ”generalized tangent vectors”.

Notice that the path θ → ρθ is not differentiable w.r.t. the usual differen-
tial structure of L1, in fact if ξθ

β 6= 0, as h → 0 the ratio
[
ρθ+h(x)− ρθ(x)

]
/h

does not converge to any limit in L1.
The L1-length of the path γ : θ → ρθ in given by:

‖γ‖L1 =

1∫

0

∥∥∥vθ
∥∥∥

L1
dθ +

M∑

β=1

1∫

0

∣∣∣ρθ(xβ+)− ρθ(xβ−)
∣∣∣
∣∣∣ξθ

β

∣∣∣ dθ. (2.17)

According to (2.17), the L1-length of a path γ is the integral of the norm of
its tangent vector, defined as follows:

‖(v, ξ)‖ =̇ ‖v‖L1 +
M∑

β=1

|∆ρβ| |ξβ| ,
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where ∆ρβ = ρ(xβ+)− ρ(xβ−) is the jump across the discontinuity xβ.
Now, given two piecewise constant functions ρ and ρ′, call Ω(u, u′) the

family of all ”differentiable” paths γ : [0, 1] → γ(t) with γ(0) = u, γ(1) = u′.
The Riemannian distance between u and u′ is given by

d(u, u′)=̇ inf
{‖γ‖L1 , γ ∈ Ω(u, u′)

}
.

To define d on all L1, for given u, u′ ∈ L1 we set

d(u, u′)=̇ inf
{‖γ‖L1 + ‖u− ũ‖L1 +

∥∥u′ − ũ′
∥∥

L1 :

ũ, ũ′ piecewise constant functions, γ ∈ Ω(u, u′)
}

.

It is easy to check that this distance coincides with the distance of L1.
To estimate the L1 distance among wave front tracking approximate

solutions we proceed as follows. Take ρ, ρ′ piecewise constant initial data
and let γ0(ϑ) = uϑ be a regular path joining ρ = ρ0 with ρ′ = ρ1. Define
ρϑ(t, x) to be a wave-front tracking approximate solution with initial data
ρϑ and let γt(ϑ) = ρϑ(t, ·). Then for every t ≥ 0, γt is a differentiable path.
If we can prove that

‖γt‖L1 ≤ ‖γ0‖L1 , (2.18)

for every t ≥ 0 then
∥∥ρ(t, ·)− ρ′(t, ·)∥∥

L1 ≤ inf
γt

‖γt‖ L1 ≤ inf
γ0

‖γ0‖L1 =
∥∥ρ(0, ·)− ρ′(0, ·)∥∥

L1 .

(2.19)
Now, to obtain (2.18), hence (2.19), it is enough to prove that, for every
tangent vector (v, ξ)(t) to any regular path γt, one has:

‖(v, ξ)(t)‖ ≤ ‖(v, ξ)(0)‖ , (2.20)

i.e the norm of a tangent vector does not increase in time. Moreover, if
(2.19) is established, then uniqueness and Lipschitz continuous dependence
of solutions to Cauchy problems is straightforwardly achieved passing to the
limit on the wave-front tracking approximate solutions.

Remark 2.6 Since the Riemannian distance d is equivalent to the L1 met-
ric, the reader could think that the whole framework is not so useful. On the
contrary, the different differential structure permits to rely on tangent vec-
tors, whose norm can be easily controlled. This would not be possible using
the tangent vectors of the usual differential structure of L1, i.e. having only
the v component.
Also, while for systems of conservation laws it is possible to find a decreasing
functional (see [7]), this is not the case for networks (see [10]), even for a
scalar conservation law.
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Let us now turn to the supply-chains case. It is easy to see that all paths
in L1 connecting piecewise constant functions can be realized using only the
ξ component of the tangent vector, see [5, 6]. Therefore, indicating by x

βj
i

the positions of discontinuities, j = 1, . . . , N , i = 1, . . . ,Mj , a tangent vector
to a function defined on the network is given by:

(ξ
βj

i
, ηj),

where ξ
βj

i
is the shift of the discontinuity x

βj
i
, while ηj is the shift of the

queue buffer occupancy qj . The norm of a tangent vector is given by:

‖(ξ
βj

i
, ηj)‖ =

∑

j,i

|ξ
βj

i
||∆ρ

βj
i
|+

∑

j

|ηj |.

Again, to control the distance among solutions it is enough to control the
evolution of norms of tangent vectors. Finally, we have:

Lemma 2.7 The norm of tangent vectors are decreasing along wave front
tracking approximations.

Proof. The norm of tangent vectors changes only at interaction times or if
a wave is generated, see [6], thus we have to consider three cases:

i) Two waves interact on a supplier.

ii) A wave interacts with a vertex.

iii) One queue empties down.

Case i) is as the classical case, see [5, 6].
Consider case ii) and assume that the interaction happens with vertex

j at time t. Let us indicate by f±j the value of the flux at aj before and
after the interaction and, similarly, by f±j−1 the value of the flux at bj−1. In
general we use the letters + and − to indicate quantities before and after
the interaction, respectively.
Assume first qj(t) = 0, then f−j−1 = f−j < µj . If f+

j−1 ≤ µj then the queue
remains empty, a ρ wave is generated on supplier j and the tangent vector
norm remains unchanged. If f+

j−1 > µj , then ξ+ = ξ−, ∆ρ+ = µj − f−j and
η+ = η− + ξ−(f+

j−1 − µj). Since ∆ρ− = f+
j−1 − f−j−1 = f+

j−1 − f−j , the norm
is conserved.
Assume now qj(t) > 0, then f−j = f+

j = µj . No ρ wave is produced and
η+ = η− + ξ−∆ρ− and again we conclude.

Let us pass to case iii) and use the same notation of case ii). Then
f−j = µj and f+

j = f−j−1 = f+
j−1 < µj . We get ∆ρ+ = µj − f−j−1, ξ+ =

η−/(µj − f−j−1) and η+ = 0, thus we are finished. ¤
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2.7 Existence for L1 initial data

Since we proved Lipschitz continuous dependence, by an approximation ar-
gument, we also get existence for L1 initial data. More precisely, we get:

Theorem 2.8 There exists a Lipschitz continuous semigroup St defined on
the domain D = {(ρj , qj) : ρj ∈ L∞, qj ∈ R}. Moreover, for every initial
datum (ρj , qj) with ρj of bounded variation, the semigroup trajectory t 7→
St(ρj , qj) is a network solution.

We point out that assumption (K) guarantees the existence of a solution
on the network, while this is not granted in the general case as showed by
next example.

Example 2.9 Consider a simple network formed by only one vertex con-
necting an incoming arc j = 1 and an outgoing arc j = 2 and initial data:

ρ1(0, x) = µ1 = µ2, ρ2(0, x) = µ2 + sin2

(
1

x− a2

)
, q2(0) > 0.

Clearly on the outgoing arc j = 2 the solution takes values in the flat part
of the flux, thus it is constant in time. In particular ρ2(t, x) has not trace
as x → a2 for any value of t.

Remark 2.10 Notice that (2.2) still makes sense for Example 2.9 if we
interpret the relation to hold for every limit limn ρ2(t, xn) with xn → a2. On
the other side, we can make oscillations in ρ2 arbitrarily large if we put no
constraints on the possible values of ρ2.

3 General networks

Now, we turn to the case of more general networks as for example depicted
in Figure 4.
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Figure 4: Network geometry for a supply chain
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3.1 Modeling

We consider general vertices v ∈ V with mv incoming and nv outgoing arcs.
The set of arc indices of incoming (outgoing) arcs is denoted by δ−v (δ+

v ). If
we have more than one outgoing arc, we need to define the distribution of
the goods from the incoming arcs. Similarly to [8], we model this as follows.
We assume that for each single vertex v a matrix Av := A(αij)i,j ∈ Rmv×nv

is given and that the total flux willing to go to arc j ∈ δ+
v is given by

∑

i∈δ−v

αijfi(ρi(bi−, t)).

Therefore, we assume that the matrix A satisfies for all i ∈ δ−v , j ∈ δ+
v :

0 ≤ αij ≤ 1 and
∑

j∈δ+
v

αij = 1. Then, the supply chain network model is
given by (1.1) and for each junction v by the following equations for the
queues, see also [11],

∀j ∈ δ+
v : ∂tqj(t) =

∑

i∈δ−v

αijfi(ρi(bi−, t))− fj(ρj(aj+, t)), (3.1)

and the boundary values ∀j ∈ δ+
v ,

fj(ρj(aj+, t)) =
{

min{∑i∈δ−v αijfi(ρi(bi−, t));µj} qj(t) = 0
µj qj(t) > 0

. (3.2)

Note that due to the positive velocity of the occurring waves the boundary
conditions are well–defined. In particular and in contrast to [8, 14] no addi-
tional maximization problem near at the vertex has to be solved. Moreover,
due to (3.1) and the assumption on A we conserve the total flux at each
vertex v for all times t > 0 :

∑

j∈δ+
v

(∂tqj(t) + fj(ρj(aj+, t))) =
∑

i∈δ−v

fi(ρi(bi−, t)).

Now, the construction of a solution to the network problem (1.1,3.1,3.2) is
as before. In particular, the results of [12] extend to problem (1.1, 3.1, 3.2)
on the network (J ,V). It is enough to control the number of waves and
interactions: Let η = minj(bj − aj) be the minimum length of a supplier.
Since all waves move at positive velocity at most equal to 1, two interactions
with vertices of the same wave can happen at most every η units of time. If
N is the number of suppliers, than there is at most a multiplication by N
every η unit of time, thus we control the number of waves and interactions.
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Therefore, for given piecewise constant initial data ρδ
j,0 on a network, a

solution (ρδ, qδ) can be defined by the wave–tracking method up to any time
T. Next, we extend Lemma 2.2 to the more general situation of a vertex v
above.

3.2 Existence, uniqueness and Lipschitz continuous depen-
dence of a weak solution

We can get again BV estimates:

Lemma 3.1 Assume a single vertex with incoming arcs δ− = {1, . . . ,m}
and outgoing arcs δ+ = {m + 1, . . . , m + n}. Furthermore, assume constant
states ρj,0, j ∈ δ− ∪ δ+ at the vertex and consider a discontinuity colliding
at time t0. Denote the new solution at the vertex after the collision by ρ̄j.
Assume no more collision of discontinuities until t∗. Then, for all t0 < t <
t∗,

∑

j∈δ−∪δ+

T.V.(fj(ρj(·, t))) +
∑

j∈δ+

|∂tqj(t)| (3.3)

≤
∑

j∈δ−∪δ+

T.V.(fj(ρj(·, t0))) +
∑

j∈δ+

|∂tqj(t0)|.

Proof. The proof is very similar to the proof of Lemma 2.2: The colliding
discontinuity has to arrive on an arc i ∈ δ− and we assume i = 1. The total
variation on the incoming arc i = 1 therefore decreases by

|f1(ρ̄1)− f1(ρ1,0)| =
∑

j∈δ+

|α1jf1(ρ̄1)− α1jf1(ρ1,0)|.

Hence, it suffices to prove that for any fixed outgoing arc j ∈ δ+ and for all
t > t0 the following inequality holds

|α1jf1(ρ̄1)− α1jf1(ρ1,0)|+ |∂tqj(t0)| ≥ T.V.(fj(ρj(·, t))) + |∂tqj(t)|. (3.4)

Fix j ∈ δ+. With the other cases being similar we only discuss the (most
interesting) case: Assume

∑

i∈δ−
αijfi(ρi,0) > fj(ρj,0)

and
α1jf1(ρ̄1) +

∑

i,i 6=1

fi(ρi,0) < µj .
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Then, the queue qj is decreasing after the collision at time t0 and we
denote again by t̄ the time when qj(t̄)0. Then for t < min{t̄, t∗} we ob-
tain T.V.(fj(ρ̄j(·, t)) = 0 and |α1jf1(ρ̄1) − α1jf1(ρ1,0)| + |∂tqj(t0)| ≥ µj −∑

i,i6=1 αijfi(ρi,0)− α1jf1(ρ̄1) = |∂tqj(t)|. If t̄ < t∗, then a new discontinuity
is generated since the queue qj empties. By (3.2) we have

fj(ρ̄j(aj+, t)) =
∑

i,i6=1

αijfj(ρj,0) + α1jf1(ρ̄1)

and therefore
|∂tq(t̄)|T.V.(fj(ρj(·, t)))

for t > t̄. Hence, (3.4) holds for all t > t0. This finishes the proof. ¤
Therefore, we again obtain the estimate (2.10), where the sum now

should run over all arcs and nodes of the network. Moreover, the estimates
on ∂tqj work also in the same way.

The same arguments as above give existence and uniqueness of a weak
solution as well as the Lipschitz continuous dependence on the data in the
general case for BV initial data. Finally, Theorem 2.8 holds for a general
network.

4 Summary

We have proven existence, uniqueness and Lipschitz continuous dependence
of a weak solution to a network model for supply chains. The model consists
of a scalar hyperbolic equation governing the dynamics of a supplier and a
ordinary differential equation for describing the behavior of the queues. The
proof of existence relies on the Front-Tracking approximations and estimates
on the total variation.
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