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Abstract. This paper proposes a macroscopic fluid dynamic model dealing with the flows of
information on a telecommunication network with sources and destinations. The model consists of a
conservation law for the packets density and a semilinear equation for traffic distributions functions,
i.e. functions describing packets paths.

We describe methods to solve Riemann Problems at junctions assigning different traffic distrib-
utions functions and two ”routing algorithms”. Moreover we prove existence of solutions to Cauchy
problems for small perturbations of network equilibria.
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1. Introduction. This paper is concerned with the description and analysis of
a macroscopic fluid dynamic model dealing with flows of information on a telecom-
munication network with sources and destinations. The latter are, respectively, areas
from which packets start their travels on the network and areas where they end.

There are various approaches to telecommunication and data networks (see for
example [1]), [3], [14], [19], [20]. A first model for telecommunication networks, similar
to that introduced recently for car traffic, has been proposed in [9] where two algo-
rithms for dynamics at nodes were considered and existence of solution to Cauchy
Problems was proved. The idea is to follow the approach used in [11] for road net-
works (see also [6], [8], [10], [13], [15], [16], [17]), introducing sources and destinations
in the telecommunication model described in [9] and thus taking care of the paths of
the packets inside the network.

A telecommunication network consists in a finite collection of transmission lines,
modelled by closed intervals of R connected together by nodes (routers, hubs, switches,
etc.). We assume that each node receives and sends information encoded in packets,
which can be seen as particles travelling on the network. Taking the Internet network
as model, we assume that:

1) Each packet travels on the network with a fixed speed and with assigned final
destination;

2) Nodes receive, process and then forward packets. Packets may be lost with a
probability increasing with the number of packets to be processed. Each lost
packet is sent again.

Since each lost packet is sent again until it reaches next node, looking at macro-
scopic level, it is assumed that the number of packets is conserved. This leads to a
conservation law for the packets density ρ on each line:

ρt + f (ρ)x = 0. (1.1)

The flux f(ρ) is given by v · ρ where v is the average speed of packets among nodes,
derived considering the amount of packets that may be lost.
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congested

Fig. 1.1. A possible cycling effect of (RA2).

Recently, a conservation law model was obtained in [2] for supply chains, which have
a dynamics somehow related to our case.

On each transmission line we also consider a vector π describing the traffic types,
i.e. the percentages of packets going from a fixed source to a fixed destination. As-
suming that packets velocity is independent from the source and the destination, the
evolution of π follows a semilinear equation

πt + v(ρ)πx = 0, (1.2)

hence inside transmission lines the evolution of π is influenced by the average speed
of packets.

The aim is then to consider networks in which many lines intersect. Riemann
problems at junctions were solved in [9] proposing two different routing algorithms:
(RA1) Packets from incoming lines are sent to outgoing ones according to their

final destination (without taking into account possible high loads of outgoing
lines);

(RA2) Packets are sent to outgoing lines in order to maximize the flux through the
node.

The main differences of the two algorithms are the following. The first one simply
sends each packet to the outgoing line which is naturally chosen according to the final
destination of the packet itself. The algorithm is blind to possible overloads of some
outgoing lines and, by some abuse of notation, is similar to the behavior of a ”switch”.
The second algorithm, on the contrary, send packets to outgoing lines taking into
account the loads, and thus possibly redirecting packets. Again by some abuse of
notation, this is similar to a ”router” behavior.

One of the drawback of the second algorithm is that it does not take into account
the global path of packets, therefore leading to possible cycling. For example consider
a telecommunication network in which some nodes are congested: if we use (RA2)
alone, the packets are not routed towards the congested nodes, and so they can enter
in loops (see Figure 1.1). These cyclings are avoided if we consider that the packets
originated from a source and with an assigned destination have precise paths inside the
network. Such paths are determined by the behaviour at junctions via the coefficients
π.

In this paper different distribution traffic functions describing different routing
strategies have been considered:

• at a junction the traffic started at source s and with d as final destination,
coming from the transmission line i, is routed on an assigned line j;

• at a junction the traffic started at source s and with d as final destination,
coming from the transmission line i, is routed on every outgoing lines or on
some of them.
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The first distribution traffic function has been already analyzed in [11] for road
networks using algorithm (RA1), thus we focus on the second one. In particular, we
define two ways according to which the traffic at a junction is splitted towards the
outgoing lines.
Let us now comment further the differences with the results of [11]. In such paper,
only the routing algorithm (RA1) was considered, together with the first choice of
distribution traffic functions (which can be seen as a particular case of the second
choice.) Since the algorithm (RA1) produces discontinuities in the map from traffic
types to fluxes (and densities), a new Riemann solver was introduced, which considers
the maximization of a quadratic cost. The latter produces as a drawback more diffi-
culties in analysis and numerics. Finally, the present paper presents a more general
approach and, using (RA2), the possibility of solving dynamics at nodes using linear
functionals.

Starting from the distribution traffic function, and using the vector π, we assign
the traffic distribution matrix, which describes the percentage of packets from an in-
coming line that are addressed to an outgoing one. Then, we propose methods to
solve Riemann Problems considering the routing algorithms (RA1) and (RA2). The
key point to construct a solution on the whole network, using a way-front tracking
method, is to derive some BV estimates on the piecewise constant approximate so-
lutions, in order to pass to the limit. In the case in which the traffic at junctions is
distributed on outgoing lines according to some probabilistic coefficients, estimates
on packets density function and on traffic-type functions are derived for the algorithm
(RA2) in order to prove existence of solutions to Cauchy problems. More precisely,
we prove existence of solutions, locally in time, for perturbations of equilibria.

The paper is organized as follows. Section 2 gives general definition of network.
Then, in Section 3, we discuss possible choices of the traffic distribution functions, and
how to compute the traffic distribution matrix from the latter functions and the traffic-
type function. We describe two routing algorithms in Section 4, giving explicit unique
solutions to Riemann problems. Finally, Section 5 provides the needed estimates for
constructing solutions to Cauchy problems.

2. Basic definitions. We consider a telecommunication network that is a finite
collection of transmission lines connected together by nodes, some of which are sources
and destinations. Formally we introduce the following definition:

Definition 2.1. A telecommunication network is given by a 7-tuple (N, I, F ,
J , S, D, R) where
Cardinality N is the cardinality of the network, i.e. the number of lines in the

network;
Lines I is the collection of lines, modelled by intervals Ii = [ai, bi] ⊆ R, i = 1, ..., N ;
Fluxes F is the collection of flux functions fi : [0, ρmax

i ] 7→ R, i = 1, ..., N ;
Nodes J is a collection of subsets of {±1, ...,±N} representing nodes. If j ∈ J ∈ J ,

then the transmission line I|j| is crossing at J as incoming line (i.e. at point
bi) if j > 0 and as outgoing line (i.e. at point ai) if j < 0. For each junction
J ∈ J , we indicate by Inc(J) the set of incoming lines, that are Ii’s such
that i ∈ J , while by Out(J) the set of outgoing lines, that are Ii’s such that
−i ∈ J . We assume that each line is incoming for (at most) one node and
outgoing for (at most) one node;

Sources S is the subset of {1, ..., N} representing lines starting from traffic sources.
Thus, j ∈ S if and only if j is not outgoing for any node. We assume that
S 6= ∅;
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Destinations D is the subset of {1, ..., N} representing lines leading to traffic des-
tinations, Thus, j ∈ D if and only if j is not incoming for any node. We
assume that D 6= ∅;

Traffic distribution functions R is a finite collection of functions rJ : Inc(J) ×
S × D → Out(J). For every J , rJ(i, s, d) indicates the outgoing direction of
traffic that started at source s, has d as final destination and reached J from
the incoming road i. (We will consider also the case of rJ multivalued.)

One usually assumed that the network is connected. However, this is not strictly
necessary to develop our theory.

2.1. Dynamics on lines. Following [9], we recall the model used to define the
dynamics of packet densities along lines. We make the following hypothesis:

(H1) Lines are composed of consecutive processors Nk, which receive and send
packets. The number of packets at Nk is indicated by Rk ∈ [0, Rmax];

(H2) There are two time-scales: ∆t0, which represents the physical travel time of a
single packet from node to node (assumed to be independent of the node for
simplicity); T representing the processing time, during which each processor
tries to operate the transmission of a given packet;

(H3) Each processor Nk tries to send all packets Rk at the same time. Packets are
lost according to a loss probability function p : [0, Rmax] → [0, 1], computed
at Rk+1, and lost packets are sent again for a time slot of length T .

The aim is to determine the fluxes on the network. Since the packet transmission
velocity on the line is assumed constant, it is possible to compute an average velocity
function and thus an average flux function.

Let us focus on two consecutive nodes Nk and Nk+1, assume a static situation,
i.e. Rk and Rk+1 are constant, and call δ the distance between the nodes. During a
processing time slot of length T the following happens. All packets Rk are sent a first
time: (1− p(Rk+1)) Rk are sent successfully and p(Rk+1)Rk are lost. At the second
attempt, of the lost packets p(Rk+1)Rk, (1−p(Rk+1) p(Rk+1)Rk are sent successfully
and p2(Rk+1)Rk are lost and so on.
Let us indicate by ∆tav the average transmission time of packets, by v̄ = δ

∆t0
the

packet velocity without losses and v = δ
∆tav

the average packets velocity. Then, we
can compute:

∆tav =
M∑

n=1

n∆t0(1− p(Rk+1))pn−1(Rk+1)

where M = [T/∆t0] (here [·] indicates the floor function) represents the number of
attempts of sending a packet. We make a further assumption:

(H4) The number of packets not transmitted for a whole processing time slot is
negligible.

The hypothesis (H4) corresponds to assume ∆t0 << T or, equivalently, M ∼ +∞.
Making the identification, M = +∞, we get:

∆tav =
+∞∑
n=1

n∆t0(1− p(Rk+1))pn−1(Rk+1) =
∆t0

1− p(Rk+1)
,

and

v =
δ

∆tav
=

δ

∆t0
(1− p(Rk+1)) = v̄(1− p(Rk+1)). (2.1)
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Let us call now ρ the averaged density and ρmax its maximum. We can interpret
the function p as a function of ρ and, using (2.1), determine the corresponding flux
function, given by the averaged density times the average velocity. It is reasonable
to assume that the probability loss function is null for some interval, which is a right
neighborhood of zero. This means that at low densities no packet is lost. Then p
should be increasing, reaching the value 1 at the maximal density, the situation of
complete stuck. A possible choice of the probability loss function is the following:

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
ρmax (ρ−σ)
ρ (ρmax−σ) , σ ≤ ρ ≤ ρmax,

then, it follows that

f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄σ(ρmax−ρ)

ρmax−σ , σ ≤ ρ ≤ ρmax.
(2.2)

Setting, for simplicity ρmax = 1 and σ = 1
2 , we get the simple ”tent” function of

Figure 2.1. To simplify the treatment of the corresponding conservation laws, we will

Ρ
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v
-

Ρ v
-

H2Σ-ΡL

Fig. 2.1. Example of flux function.

assume the following:
(F ) Setting ρmax = 1, on each line the flux fi : [0, 1] → R is concave, f(0) =

f(1) = 0 and there exists a unique maximum point σ ∈]0, 1[.
Notice that the flux of Figure 2.1 or, more generally, the flux given in (2.2) satisfies

the assumption (F).

2.2. Dynamics on the network. On each transmission line Ii we consider the
evolution equation

∂tρi + ∂xfi (ρi) = 0, (2.3)

where we use the assumption (F ). Therefore, the network load evolution is described
by a finite set of functions ρi : [0,+∞[× Ii 7→ [0, ρmax

i ].
On each transmission line Ii we want ρi to be a weak entropic solution of (2.3), that
is for every function ϕ : [0,+∞[× Ii → R smooth, positive with compact support on
]0,+∞[× ]ai, bi[

+∞∫

0

bi∫

ai

(
ρi

∂ϕ

∂t
+ fi (ρi)

∂ϕ

∂x

)
dxdt = 0, (2.4)
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and for every k ∈ R and every ϕ̃ : [0,+∞[× Ii → R smooth, positive with compact
support on ]0, +∞[× ]ai, bi[

+∞∫

0

bi∫

ai

(
|ρi − k| ∂ϕ̃

∂t
+ sgn(ρi − k) (fi (ρi)− fi (k))

∂ϕ̃

∂x

)
dxdt ≥ 0. (2.5)

For each i ∈ S (resp. i ∈ D) we need an inflow function (resp. outflow), thus consider
measurable functions ψi : [0,+∞[→ [0, ρmax

i ]. Then the corresponding functions ρi

must verify the boundary condition ρi(t, ai) = ψi(t) (resp. ρi(t, bi) = ψi(t)) in the
sense of [4].

Moreover, inside each line Ii we define a traffic-type function πi, which measures
the portion of the whole density coming from each source and travelling towards each
destination:

Definition 2.2. A traffic-type function on a line Ii is a function

πi : [0,∞[×[ai, bi]× S ×D 7→[0, 1]

such that, for every t ∈ [0,∞[ and x ∈ [ai, bi]
∑

s∈S,d∈D
πi(t, x, s, d) = 1.

In other words, πi(t, x, s, d) specifies the fraction of the density ρi(t, x) that started
from source s and is moving towards the final destination d.

We assumed, on the discrete model, that a FIFO policy is used at nodes. Then it
is natural that the averaged velocity, obtained in the limit procedure, is independent
from the original sources of packets and their final destinations. In other words, we
make the following hypothesis:

(H5) On each line Ii, the average velocity of packets depends only on the value of
the density ρi and not on the values of the traffic-type function πi.

As a consequence of hypothesis (H5), we have the following. If x(t) denotes a
trajectory of a packet inside the line Ii, then we get

πi(t, x(t), s, d) = const. (2.6)

In fact, consider the packets that at time t are in position x(t). All such packets
have the same velocity by (H5), thus their trajectories coincide, independently of
their sources and destinations. In other words at a time t′ > t all packets will be
in position x(t′). Then the fractions of the density, expressed by π, are the same at
(t, x(t)) and at (t′, x(t′)).
Taking the total differential with respect to the time of (2.6), we deduce the semilinear
equation

∂tπi(t, x, s, d) + ∂xπi(t, x, s, d) · vi(ρi(t, x)) = 0. (2.7)

This equation is coupled with equation (2.3) on each line Ii. More precisely, equation
(2.7) depends on the solution of (2.3), while in turn at junctions the values of πi will
determine the traffic distribution on outgoing lines as explained below.

For simplicity and without loss of generality, we assume from now on that the
fluxes fi are all the same and we indicate them with f . Thus, the model for a single
transmission line, consists in the system of equations:

{
ρt + f (ρ)x = 0,
πt + πx · v(ρ) = 0.
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To treat the evolution at junction, let us introduce some notations. Fix a junction
J with n incoming transmission lines, say I1, ..., In, and m outgoing transmission lines,
say In+1, ..., In+m. A weak solution at J is a collection of functions ρl : [0, +∞[ × Il

7→ R, l = 1, ..., n + m, such that

n+m∑

l=1




+∞∫

0

bl∫

al

(
ρl

∂ϕl

∂t
+ f (ρl)

∂ϕl

∂x

)
dxdt


 = 0, (2.8)

for every ϕl, l = 1, ..., n + m, smooth having compact support in ]0, +∞[× ]al, bl] for
l = 1, ..., n (incoming transmission lines) and in ]0,+∞[× [al, bl[ for l = n+1, ..., n+m
(outgoing transmission lines), that are also smooth across the junction, i.e.

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, ..., n, j = n + 1, ..., n + m.

Remark 2.3. Let ρ = (ρ1, ..., ρn+m) be a weak solution at the junction J such
that each x → ρi(t, x) has bounded variation. We can deduce that ρ satisfies the
Rankine-Hugoniot condition at J , namely

n∑

i=1

f(ρi(t, bi−)) =
n+m∑

j=n+1

f(ρj(t, aj+)),

for almost every t > 0.
For a scalar conservation law a Riemann problem is a Cauchy problem for an initial

data of Heavyside type, that is piecewise constant with only one discontinuity. One
looks for centered solutions, i.e. ρ(t, x) = φ(x

t ) formed by simple waves, which are the
building blocks to construct solutions to the Cauchy problem via wave-front tracking
algorithm. These solutions are formed by continuous waves called rarefactions and by
travelling discontinuities called shocks. The speed of waves are related to the values
of f ′, see [5], [7], [18].

Analogously, we call Riemann problem for a junction the Cauchy problem corre-
sponding to an initial data ρ1,0, ..., ρn+m,0 ∈ [0, 1], and πs,d

1 , ..., πs,d
n+m ∈ [0, 1] which

are constant on each transmission line.
Definition 2.4. A Riemann Solver (RS) for the junction J is a map that as-

sociates to Riemann data ρ0 = (ρ1,0, . . . , ρn+m,0) and Π0 = (π1,0, . . . , πn+m,0) at J

the vectors ρ̂ = (ρ̂1, . . . , ρ̂n+m) and Π̂ = (π̂1, . . . , π̂n+m) so that the solution on an
incoming transmission line Ii, i = 1, . . . , n, is given by the wave (ρi,0, ρ̂i) and on an
outgoing one Ij, j = n + 1, . . . , n + m, is given by the waves(ρ̂j , ρj,0) and (π̂j , πj,0).
We require the following consistency condition:

(CC) RS(RS(ρ0,Π0)) = RS(ρ0,Π0).
We will define a RS at a junction in next sections. Once a Riemann solver is

defined and the solution of the Riemann Problem is obtained, we can define admissible
solutions at junctions.

Definition 2.5. Assume a Riemann solver RS is assigned. Let ρ = (ρ1, . . . , ρn+m)
and Π = (π1, . . . , πn+m) be such that ρi(t, ·) and πi(t, ·) are of bounded variation for
every t ≥ 0. Then (ρ, Π) is an admissible weak solution of (1.1) related to RS at the
junction J if and only if the following properties hold:

(i) ρ is a weak solution at junction J ;
(ii) Π is a weak solution at junction J ;
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(iii) for almost every t setting

ρJ (t) = (ρ1(·, b1−), . . . , ρn(·, bn−), ρn+1(·, an+1+), . . . , ρn+m(·, an+m+)),
ΠJ (t) = (π1(·, b1−), . . . , πn(·, bn−), πn+1(·, an+1+), . . . , πn+m(·, an+m+))

we have

RS(ρJ(t),ΠJ(t)) = (ρJ (t), ΠJ(t)).

Given an admissible network (see [11]) we have to specify how to define a solution.
Definition 2.6. Consider an admissible network (N , I, F , J , S, D, R). A set

of Initial-Boundary Conditions (briefly IBC) is given assigning measurable functions
ρ̄i : Ii 7→ [0, ρmax

i ], π̄i : [ai, bi] × S × D 7→ [0, 1], i = 1, ..., N and measurable functions
ψi : [0, +∞[ 7→ [0, ρmax

i ], i ∈ S ∪ D and ϑi,j : [0, +∞[7→ [0, 1], i ∈ S, j ∈ D with the
property that

∑
jϑi,j(t) = 1.

Definition 2.7. Consider an admissible network (N , I, F , J , S, D, R) and a
set of IBC. A set of functions ρ = ( ρ1, ..., ρN ) with ρi : [0, +∞[×Ii 7→ [0, ρmax

i ] contin-
uous as functions from [0,+∞[ into L1, and Π = (π1, ..., πN ) with πi : [0, +∞[×Ii ×
S ×D 7→ [0, 1], continuous as functions from [0,+∞[ into L1 for every s ∈ S, d ∈ D,
is an admissible solution if the following holds. Each ρi is a weak entropic solution
to (2.3) on Ii, ρi(0, x) = ρ̄i(x) for almost every x ∈ [ai, bi], ρi(t, ai) = ψi(t) if i ∈ S
and ρi(t, bi) = ψi(t) if i ∈ D in the sense of [4]. Each πi is a weak solution to the
corresponding equation (2.7), πi(0, x) = π̄i(x) for almost every x ∈ [ai, bi] and for
every i ∈ S, j ∈ D πi,j

i (t, ai) = ϑi,j in the sense of [4]. Finally at each junction (ρ,Π)
is a weak solution and is an admissible weak solution in case of bounded variation.

3. Traffic distribution at junctions. Consider a junction J in which there
are n transmission lines with incoming traffic and m transmission lines with outgoing
traffic.

We denote with ρi(t, x), i = 1, ..., n and ρj(t, x), j = n + 1, ..., n + m the traffic
densities, respectively, on the incoming transmission lines and on the outgoing ones
and by (ρ1,0, .., ρn+m,0) the initial datum.

Define γmax
i and γmax

j as follows:

γmax
i =

{
f(ρi,0), if ρi,0 ∈ [0, σ],
f(σ), if ρi,0 ∈ ]σ, 1] , i = 1, ..., n, (3.1)

and

γmax
j =

{
f(σ), if ρj,0 ∈ [0, σ],

f(ρj,0), if ρj,0 ∈ ]σ, 1] , j = n + 1, ..., n + m. (3.2)

The quantities γmax
i and γmax

j represent the maximum flux that can be obtained by
a single wave solution on each transmission line. Finally denote with

Ωi = [0, γmax
i ], i = 1, ..., n,

Ωj = [0, γmax
j ], j = n + 1, ..., n + m,

and with γ̂inc = (f(ρ̂i), ..., f(ρ̂n)), γ̂out = (f(ρ̂n+1), ..., f(ρ̂n+m)) where ρ̂ = (ρ̂1, ..., ρ̂n+m)
is the solution of the Riemann Problem at the junction.

Now, we discuss some possible choices for the traffic distribution function:
1) rJ : Inc(J)× S ×D → Out(J);
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2) rJ : Inc(J)× S ×D ↪→ Out(J), i.e. rJ is a multifunction.
If rJ is of type 1), then each packet has a deterministic route, it means that,

at the junction J , the traffic that started at source s and has d as final destination,
coming from the transmission line i, is routed on an assigned line j (rJ(i, s, d) = j).

Instead if rJ is of type 2), at the junction J , the traffic with source s and desti-
nation d coming from a line i is routed on every line Ij ∈ Out(J) or on some lines
Ij ∈ Out(J). We can define rJ(i, s, d) in two different ways:
2a) rJ : Inc(J)× S ×D ↪→ Out(J),
rj(i, s, d) ⊆ Out(J);

2b) rJ : Inc(J)× S ×D → [0, 1]Out(J),

rJ (i, s, d) = (αi,s,d,n+1
J , ..., αi,s,d,n+m

J )

with 0 ≤ αi,s,d,j
J ≤ 1, j ∈ {n + 1, ..., n + m},

n+m∑
j=n+1

αi,s,d,j
J = 1.

In case 2a) we have to specify in which way the traffic at junction J is splitted
towards the outgoing lines.

The definition 2b) means that, at the junction J , the traffic with source s and
destination d coming from line Ii is routed on the outgoing line j, j = n + 1, ..., n + m
with probability αi,s,d,j

J .
Let us analyze how the distribution matrix A is constructed using π and rJ .
Definition 3.1. A distribution matrix is a matrix

A=̇ {αj,i}j=n+1,...,n+m,i=1,...,n ∈ Rm×n

such that

0 < αj,i < 1,

n+m∑

j=n+1

αj,i = 1,

for each i = 1, ..., n and j = n + 1, ..., n + m, where αj,i is the percentage of packets
arriving from the i-th incoming transmission line that take the j-th outgoing trans-
mission line.

In case 1) we can define the matrix A in the following way. Fix a time t and
assume that for all i ∈ Inc(J), s ∈ S and d ∈ D, πi(t, ·, s, d) admits a limit at the
junction J , i.e left limit at bi. For i ∈ {1, ..., n}, j ∈ {n + 1, ..., n + m}, we set

αj,i =
∑

s∈S,d∈D,
rJ (i,s,d)=j

πi(t, bi−, s, d).

The fluxes fi(ρi) to be consistent with the traffic-type functions must satisfy the
following relation:

fj(ρj(·, aj+)) =
n∑

i=1

αj,ifi(ρi(·, bi−)),

for each j = n + 1, ..., n + m.
Let us analyze how to define the matrix A in the case 2a). We may assign

ϕ(i, s, d) ∈ rJ(i, s, d) and set

αj,i =
∑

s∈S,d∈D,
i:ϕ(i,s,d)=j

πi(t, bi−, s, d),

αj,i = 0, if j /∈ rJ(i, s, d).
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Example 3.2. Fix a junction J with two incoming lines {1, 2} and two outgoing
lines {3, 4} and suppose that rJ(1, s, d) = {3, 4} and rJ(2, s, d) = {3}. Since α4,2 = 0,
we have α3,2 = 1. The coefficients α3,1 and α4,1 can assume the following values:

{
α3,1 = 0,
α4,1 = 1,

or
{

α3,1 = 1,
α4,1 = 0.

We get a finite number of possible distribution matrices A :

A =
(

0 1
1 0

)
, A =

(
1 1
0 0

)
.

Remark 3.3. This model proposes an exclusive strategy, in fact all packets flow
at the junction is routed from line 1 to line 3 or to line 4.

However, it is more natural to assign a flexible strategy defining a set of admissible
matrices A in the following way

A =





A : ∃αi,s,d,j
J ∈ [0, 1],

n+m∑

j=n+1

αi,s,d,j
J = 1, αi,s,d,j

J = 0, if j /∈ rJ(i, s, d) :

αj,i =
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πi(t, bi−, s, d)αi,s,d,j
J





Finally, we treat now the case 2b).
In this case the matrix A is unique and is defined by

αj,i =
∑

s∈S,d∈D
πi(t, bi−, s, d)αi,s,d,j

J . (3.3)

4. Riemann solvers at junctions. In this section we define solutions to Rie-
mann problems at junctions, since this is the basic ingredient to construct solution to
Cauchy problems via wave-front tracking algorithm.

We describe two different Riemann solvers at a junction that represent two dif-
ferent routing algorithms:
(RA1) We assume that

(A) the traffic from incoming transmission lines is distributed on outgoing trans-
mission lines according to fixed coefficients;

(B) respecting (A) the router chooses to send packets in order to maximize fluxes
(i.e., the number of packets which are processed).

(RA2) We assume that the number of packets through the junction is maximized
both over incoming and outgoing lines.

Remark 4.1. In what follows we analyze the case in which the traffic distribution
function is of type 2). The case 1) has been considered in [11] using the following rule:
(RGP) We assume that
(A) the traffic from incoming transmission lines is distributed on outgoing transmis-

sion lines according to fixed coefficients;
(B) respecting (A) the router chooses to send packets in order to maximize

c2

n∑

i=1

fi(ρi(·, bi−))− c1[dist((f1(ρ1(·, b1−)), ..., fn(ρn(·, bn−))), r)]2
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subject to

fj(ρj(·, aj+)) =
n∑

i=1

αj,ifi(ρi(·, bi−)), for each j = n + 1, ..., n + m,

where c1 and c2 are strictly positive constants, and dist(·, r) denotes the
Euclidean distance in Rn from the line r, which is given by





γ2 = p1γ1,
...

γn = pn−1γn−1.

and (p1, ..., pn−1) determine a ”level of priority” at the junctions of incoming
lines. This maximization procedure takes into account priorities over incom-
ing roads and ensures continuity of solutions respect to the coefficients π.

4.1. Algorithm (RA1). We have to distinguish case 2a) and 2b).
In case 2a) in order to solve the Riemann Problem at the junction we have to

prove that the admissible region is convex. First we prove the following lemma
Lemma 4.2. The set A is convex.
Proof. Let us consider a convex combination λA1+(1−λ)A2 with λ ∈ [0, 1], A1, A2 ∈

A. We have

(λA1 + (1− λ)A2)i,j = λ
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πiα
i,s,d,j
J,1 + (1− λ)

∑

s∈S,d∈D,
j∈rJ (i,s,d)

πiα
i,s,d,j
J,2 =

∑

s∈S,d∈D,
j∈rJ (i,s,d)

πi(λαi,s,d,j
J,1 + (1− λ)αi,s,d,j

J,2 ) =
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πiα̂
i,s,d,j
J ,

with α̂i,s,d,j
J ∈ [0, 1]. Moreover

n+m∑

j=n+1

α̂i,s,d,j
J =

n+m∑

j=n+1

(λαi,s,d,j
J,1 +(1−λ)αi,s,d,j

J,2 ) = λ

n+m∑

j=n+1

αi,s,d,j
J,1 +(1−λ)

n+m∑

j=n+1

αi,s,d,j
J,2 = 1,

then λA1 + (1− λ)A2 ∈ A.
Now recall that the admissible region is given by:

Ωadm = {γ̂ : γ̂ ∈ Ω1 × ...× Ωn, ∃A ∈ A t.c.Aγ̂ ∈ Ωn+1 × ...× Ωn+m} .

We can prove that this region is convex at least for the case of junctions with two
incoming and two outgoing lines, more precisely we have:

Lemma 4.3. Fix a junction J with n = 2 incoming lines and m = 2 outgoing
ones and assume that there is a unique source and a unique destination. Then the set
Ωadm is convex.

Proof. We have to consider the following cases:
i) rJ (1, s, d) = 3 and rJ(2, s, d) = 3;
ii) rJ (1, s, d) = 3 and rJ(2, s, d) = 4;
iii) rJ (1, s, d) = {3, 4} and rJ (2, s, d) = 4;
iv) rJ (1, s, d) = {3, 4} and rJ (2, s, d) = {3, 4}.
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All other cases can be obtained by relabelling lines. Cases i) and ii) are immediate,
since γ̂ ∈ Ω1×Ω2 satisfies γ̂ ∈ Ωadm if and only if γ̂1+γ̂2 ≤ γmax

3 (case i)) or γ̂1 ≤ γmax
3

and γ̂2 ≤ γmax
4 (case ii).)

Consider now case iii). Then Aγ̂, A ∈ A, is the segment joining the point (γ̂1, γ̂2) to
the point (0, γ̂1 + γ̂2). Thus γ̂ ∈ Ω1 × Ω2 satisfies γ̂ ∈ Ωadm if and only if γ̂1 + γ̂2 ≤
γmax
3 + γmax

4 and γ̂2 ≤ γmax
3 .

Finally, assume case iv) holds true. Then Aγ̂, A ∈ A, is the segment joining the point
(γ̂1 + γ̂2, 0) to the point (0, γ̂1 + γ̂2). Thus γ̂ ∈ Ω1 ×Ω2 satisfies γ̂ ∈ Ωadm if and only
if γ̂1 + γ̂2 ≤ γmax

3 + γmax
4 .

If the region Ωadm is convex than rules (A) and (B) amount to the Linear Pro-
gramming problem:

max
γ̂∈Ωadm

(γ̂1 + γ̂2).

This problem has clearly a solution, which may not be unique.

Let us consider the case 2b). We need some more notations.
Definition 4.4. Let τ : [0, 1] → [0, 1] be the map such that:
1. f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];
2. τ(ρ) 6= ρ for every ρ ∈ [0, 1]\{σ}.

Clearly, τ is well defined and satisfies

0 ≤ ρ ≤ σ ⇔ σ ≤ τ(ρ) ≤ 1,
σ ≤ ρ ≤ 1 ⇔ 0 ≤ τ(ρ) ≤ σ.

To state the main result of this section we need some assumption on the matrix A
(satisfied under generic conditions for m = n). Let {e1, ..., en} be the canonical basis
of Rn and for every subset V ⊂ Rn indicate by V ⊥ its orthogonal. Define for every
i = 1, ..., n, Hi = {ei}⊥, i.e. the coordinate hyperplane orthogonal to ei and for every
j = n+1, ..., n+m let αj = {αj1, ..., αjn} ∈ Rn and define Hj = {αj}⊥. Let K be the
set of indices k = (k1, ..., kl), 1 ≤ l ≤ n− 1, such that 0 ≤ k1 < k2 < ... < kl ≤ n + m

and for every k ∈ K set Hk =
l⋂

h=1

Hh. Letting 1 = (1, ..., 1) ∈ Rn, we assume

(C) for every k ∈ K, 1 /∈H⊥
k .

In case 2b) the following result holds
Theorem 4.5. (Theorem 3.1 in [6] and 3.2 in [11]) Let (N, I, F , J , S, D,

R) be an admissible network and J a junction with n incoming lines and m outgoing
ones. Assume that the flux f : [0, 1] → R satisfies (F ) and the matrix A satisfies
condition (C). For every ρ1,0, ..., ρn+m,0 ∈ [0, 1], and for every πs,d

1 , ...πs,d
n+m ∈ [0, 1]

, there exists densities ρ̂1, ..., ρ̂n+m and a unique admissible centered weak solution,
ρ = (ρ1, ..., ρn+m) at the junction J such that

ρ1(0, ·) ≡ ρ1,0, ..., ρn+m(0, ·) ≡ ρn+m,0,

π1(0, ·s, d) = πs,d
1 , ..., πn+m(0, ·, s, d) = πs,d

n+m, (s ∈ S, d ∈ D).

We have

ρ̂i ∈
{ {ρi,0} ∪ ]τ(ρi,0), 1] , if 0 ≤ ρi,0 ≤ σ,

[σ, 1] , if σ ≤ ρi,0 ≤ 1,
i = 1, ..., n, (4.1)

ρ̂j ∈
{

[0, σ], if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ , if σ ≤ ρj,0 ≤ 1,

j = n + 1, ..., n + m, (4.2)
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and on each incoming line Ii, i = 1, ..., n, the solution consists of the single wave
(ρi,0, ρ̂i), while on each outgoing line Ij , j = n+1, ..., n+m, the solution consists of the
single wave (ρ̂j , ρj,0). Moreover π̂i(t, ·, s, d) = πs,d

i for every t ≥ 0, i ∈ {1, ..., n}, s ∈
S, d ∈ D and

π̂j(t, aj+, s, d) =

n∑

i=1

αi,s,d,j
J πs,d

i (t, bi−, s, d)f(ρ̂i)

f(ρ̂j)

for every t ≥ 0, j ∈ {n + 1, ..., n + m}, s ∈ S, d ∈ D.

4.2. Algorithm (RA2). To solve Riemann problems according to (RA2) we
need some additional parameters called priority and traffic distribution parameters.
For simplicity of exposition, consider, first a junction J in which there are two trans-
mission lines with incoming traffic and two transmission lines with outgoing traffic.
In this case we have only one priority parameter q ∈ ]0, 1[ and one traffic distribution
parameter α ∈ ]0, 1[. We denote with (ρ1,0, ρ2,0, ρ3,0, ρ4,0) and (πs,d

1,0, π
s,d
2,0, π

s,d
3,0, π

s,d
4,0)

the initial data.
In order to maximize the number of packets through the junction over incoming

and outgoing lines we define

Γ = min {Γmax
in , Γmax

out } ,

where Γmax
in = γmax

1 + γmax
2 and Γmax

out = γmax
3 + γmax

4 . Thus we want to have Γ as flux
through the junction.

One easily see that to solve the Riemann problem, it is enough to determine
the fluxes γ̂i = f(ρ̂i), i = 1, 2. In fact, to have simple waves with the appropriate
velocities, i.e. negative on incoming lines and positive on outgoing ones, we get the
constraints (4.1), (4.2). Observe that we compute γ̂i = f(ρ̂i), i = 1, 2 without taking
into account the type of traffic distribution function.

We have to distinguish two cases:
I Γmax

in = Γ,
II Γmax

in > Γ.
In the first case we set γ̂i = γmax

i , i = 1, 2.
Let us analyze the second case in which we use the priority parameter q. Not all

Γ1

Γ2

Γ1+Γ2=GΓ2
max

Γ1
max

Fig. 4.1. Case Γmax
in > Γ.

packets can enter the junction, so let C be the amount of packets that can go through.
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Then qC packets come from first incoming line and (1− q)C packets from the second.
Consider the space (γ1, γ2) and define the following lines:

rq : γ2 =
1− q

q
γ1,

rΓ : γ1 + γ2 = Γ.

Define P to be the point of intersection of the lines rq and rΓ. Recall that the final
fluxes should belong to the region (see Figure 4.1):

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , i = 1, 2} .

We distinguish two cases:
a) P belongs to Ω,
b) P is outside Ω.

In the first case we set (γ̂1, γ̂2) = P , while in the second case we set (γ̂1, γ̂2) =
Q, with Q = projΩ∩rΓ(P ) where proj is the usual projection on a convex set, see
Figure 4.2.

Γ1

Γ2

rq

rq

Q

Γ1
max

Γ2
max

Γ1
max

rG

P

P

Fig. 4.2. P belongs to Ω and P is outside Ω.

The reasoning can be repeated also in the case of n incoming lines. In Rn the line
rq is given by rq = tvq, t ∈ R, with vq ∈ ∆n−1 where

∆n−1 =

{
(γ1, ..., γn) : γi ≥ 0, i = 1, ..., n,

n∑

i=1

γi = 1

}

is the (n− 1) dimensional simplex and

HΓ =

{
(γ1, ..., γn) :

n∑

i=1

γi = Γ

}

is a hyperplane where Γ = min{∑
in

γmax
i ,

∑
out

γmax
j }. Since vq ∈ ∆n−1, there exists a

unique point P = rq ∩HΓ. If P ∈ Ω, then we set (γ̂1, ..., γ̂n) = P . If P /∈ Ω , then we
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set (γ̂1, ..., γ̂n) = Q = projΩ∩HΓ(P ), the projection over the subset Ω ∩HΓ. Observe
that the projection is unique since Ω ∩HΓ is a closed convex subset of HΓ.

Remark 4.6. A possible alternative definition in the case P /∈ Ω is to set
(γ̂1, ..., γ̂n) as one of the vertices of Ω ∩HΓ.

As for the algorithm (RA1) π̂s,d
i = πs,d

i,0 , i = 1, 2.
Let us now determine γ̂j , j = 3, 4.
As for the incoming transmission lines we have to distinguish two cases :

I Γmax
out = Γ,

II Γmax
out > Γ.
In the first case γ̂j = γmax

j , j = 3, 4. Let us determine γ̂j in the second case.
Recall α the traffic distribution parameter. Since not all packets can go on the

outgoing transmission lines, we let C be the amount that goes through. Then αC
packets go on the outgoing line I3 and (1−α)C on the outgoing line I4. Consider the
space (γ3, γ4) and define the following lines:

rα : γ4 =
1− α

α
γ3,

rΓ : γ3 + γ4 = Γ.

The line rα can be computed from the matrix A. In fact, if we assume that a traffic
distribution matrix A is assigned, then we compute γ̂1, ...γ̂n, and choose vα ∈ ∆m−1

by

vα = ∆m−1 ∩ {tA(γ̂1, ...γ̂n) : t ∈ R} ,

where

∆m−1 =

{
(γn+1, ..., γm+n) : γn+i ≥ 0, i = 1, ..., m,

n∑

i=1

γn+i = 1

}

is the (m− 1) dimensional simplex.
We have to distinguish case 2a) and 2b) for the traffic distribution function.
Case 2a). Let us introduce the set

G =
{
Aγ̂T

inc : A ∈ A}
.

Lemma 4.7. The set G is connected.
Proof. The set G is the image of a connected set through a continuous map. Fixed

(γ̂1, γ̂2) the map is defined by

(α̃1,s,d,3
J , α̃2,s,d,3

J ) ∈ [0, 1]× [0, 1] → (Σ, γ̂1 + γ̂2 − Σ),

where Σ =
∑
s,d

(γ̂1π
s,d
1 α̃1,s,d,3

J + γ̂2π
s,d
2 α̃2,s,d,3

J ).

Let us denote with G1 and G2 the endpoints of this set. Since in case 2a) we
have an infinite number of matrices A, each of one determine a line rα, we choose
the most ”natural” line rα , i.e. the one nearest to the statistic line determined by
measurements on the network.

Recall that the final fluxes should belong to the region:

Ω =
{
(γ3, γ4) : 0 ≤ γj ≤ γmax

j , j = 3, 4
}

.

Define P = rα ∩ rΓ, R = (Γ − γmax
4 , γmax

4 ), Q = (γmax
3 , Γ − γmax

3 ). We distinguish 3
cases:
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Γ3

Γ4

rΑ

P

R

rΑ
P

Q

Γ3
max

Γ4
max

rG

G1

G2

G1

G2

G1

G2

Fig. 4.3. Traffic distribution function of type 2a)

a) G ∩ Ω ∩ rΓ 6= ∅,
b) G ∩ Ω ∩ rΓ = ∅ and γ3(G1) < γ3(R),
c) G ∩ Ω ∩ rΓ = ∅ and γ3(G1) > γmax

3 .

If the set G has a priority over the line rΓ we set (γ̂3, γ̂4) in the following way.
In case a) we define (γ̂3, γ̂4) = projG∩Ω∩rΓ(P ), in case b) (γ̂3, γ̂4) = R, and finally in
case c) (γ̂3, γ̂4) = Q.

Otherwise, if rΓ has a priority over G we set (γ̂3, γ̂4) = min
γ∈Ω

F(γ, rα,G) where F is a

convex functional which depends on γ, rα and on the set G of the routing standards.
A possible choice of F is F =d(γ, B) where B = w1rα + w2

∫
G

rdr with w1, w2 real

numbers and d denotes a distance.
The reasoning can be repeated also in the case of m outgoing lines.
The vector π̂s,d

i , j = 3, 4 are computed in the same way as for the algorithm
(RA1).

Case 2b). In the case 2b) we have a unique matrix A and a unique vector vα,
so the fluxes on outgoing lines are computed as in the case without sources and
destinations.

We distinguish two cases:
a) P belongs to Ω,
b) P is outside Ω.

In the first case we set (γ̂3, γ̂4) = P , while in the second case we set (γ̂3, γ̂4) = Q,
where Q = projΩadm

(P ). Again, we can extend to the case of m outgoing lines as for
the incoming lines defining the hyperplane HΓ = {(γn+1, . . . , γn+m) :

∑n+m
j=n+1 γj = Γ}

and choosing a vector vα ∈ ∆m−1.

Finally we define π̂s,d
i , j = 3, 4 as in the case 2a):

π̂j(t, aj+, s, d) =

n∑

i=1

αi,s,d,j
J πs,d

i (t, bi−, s, d)f(ρ̂i)

f(ρ̂j)

for every t ≥ 0, j ∈ {n + 1, ..., n + m}, s ∈ S, d ∈ D.

Remark 4.8. Note that in case of algorithm (RA2) we find, separately, solution
on incoming and outgoing lines.

Remark 4.9. If Γmax
out < Γmax

in we can define a different Riemann solver, consid-
ering a priority order of sending packets: (sk1 , dl1) = c1, (sk2 , dl2) = c2, (sk3 , dl3) =
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c3, ...Packets are sent until the quantity of packets has been sent is equal to
ῑ∑

ι=1

n∑

i=1

πcι
i γi0

where ῑ is the minimum such that
ῑ∑

ι=1

n∑

i=1

πcι
i γi0 > Γ.

Let us define d = Γ−
ῑ∑

ι=1

n∑

i=1

πcι
i γi0 then

γ̂1 =
ῑ−1∑
ι=1

πcι
1 γ10 + d/2,

γ̂2 =
ῑ−1∑
ι=1

πcι
2 γ20 + d/2.

Once solutions to Riemann problems are given, one can use a wave-front tracking
algorithm to construct a sequence of approximate solutions. To pass to the limit
one has to bound the number of waves and the BV norm of approximate solutions,
see [5, 6]. In the next section we prove a BV bound on the density for the case of
junctions with two incoming and two outgoing transmission lines, for both the routing
algorithms.

5. Estimates on Density Variation. In this section we derive estimates on
the total variation of the densities along a wave-front tracking approximate solution
(constructed as in [6]) for the algorithm (RA2) with the traffic distribution function
of type 2b). This allows to construct the solutions to the Cauchy problem in standard
way, see [5].

Let us consider an admissible network (N, I, F , J , S, D, R). We assume that
(A1) every junction has at most two incoming and at most two outgoing lines.

This hypothesis is crucial, because the presence of more complicate junctions may
provoke additional increases of the total variation of the flux and so of the density.
The case where junctions have at most two incoming transmission lines and at most
two outgoing ones can be treated in the same way.

From now on we fix a telecommunication network (I,J ), with each node having
at most two incoming and at most two outgoing lines, and a wave-front tracking
approximate solution ρ,Π, defined on the telecommunication network.

Our aim is to prove an existence result for a solution (ρ,Π) in the case of a small
perturbation of the equilibrium (ρ̄, Π̄). We have to analyze the following types of
interactions:
I1. interaction of ρ−waves with ρ−waves on lines;
I2. interaction of ρ−waves with Π−waves on lines;
I3. interaction of Π−waves with Π−waves on lines;
I4. interaction of ρ−waves with junctions;
I5. interaction of Π−waves with junctions.

Observe that interaction of type I1 is classical and the total variation of the
density decreases. Interaction of type I3 can not happen since Π−waves travel with
speed depending only on the value of ρ.
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5.1. Interaction of type I2. Let us consider a line Ii. We report some results
proved in [11]. First we note that the characteristic speed of the density is smaller
than the speed of a Π−wave, as follows from the lemma:

Lemma 5.1. Let ρ ∈ [0, 1] be a density and let λ(ρ) be its characteristic speed.
Then λ(ρ) ≤ v(ρ) and the equality holds if and only if ρ = 0.

Lemma 5.2. Let us consider a shock wave connecting ρ− and ρ+. Then
1. λ(ρ−, ρ+) < v(ρ−);
2. λ(ρ−, ρ+) ≤ v(ρ+) and the equality holds if and only if ρ− = 0.

Lemma 5.3. Let us consider a rarefaction shock fan connecting ρ− and ρ+. Then
v(ρ+) > v(ρ−) > f ′(ρ−).

Putting together the previous lemmas we obtain the following result.
Proposition 5.4. An interaction of a ρ-wave with a Π-wave can happen only

if the Π-wave interacts from the left respect to the ρ-wave. Moreover if this happens,
then the ρ-wave does not change, while the Π-wave changes only its speed.

5.2. Interaction of type I4. We consider interactions of ρ-waves with the
junctions. In general these interactions produce an increment of the total variation of
the flux and of the density in all the lines and a variation of the values of traffic-type
functions on outgoing lines.

Fix a junction J with two incoming transmission lines I1 and I2 and two outgoing
ones I3 and I4. Suppose that at some time t̄ a wave interacts with the junction J
and let (ρ−1 , ρ−2 , ρ−3 , ρ−4 ) and (ρ+

1 , ρ+
2 , ρ+

3 , ρ+
4 ) indicate the equilibrium configurations

at the junction J before and after the interaction respectively. Introduce the following
notation

γ±i = f(ρ±i ), Γ±in = γ±1,max + γ±2,max, Γ±out = γ±3,max + γ±4,max,

Γ± = min{Γ±in, Γ±out},

where γ±i,max, i = 1, 2 and γ±j,max, j = 3, 4 are defined as in (3.1) and (3.2). In general
− and + denote the values before and after the interaction, while by ∆ we indicate
the variation, i.e. the value after the interaction minus the value before. For example
∆Γ = Γ+ − Γ−. Let us denote by TV (f)± = TV (f(ρ(t̄±, ·))) the flux variation of
waves before and after the interaction, and

TV (f)±in = TV (f(ρ1(t̄±, ·))) + TV (f(ρ2(t̄±, ·))),

TV (f)±out = TV (f(ρ3(t̄±, ·))) + TV (f(ρ4(t̄±, ·))),

the flux variation of waves before and after the interaction, respectively, on incoming
and outgoing lines.

Let us prove some estimates which are used later to control the total variation of
the density function. For simplicity, from now on we assume that:

(A2) the wave interacting at time t̄ with J comes from line 1 and we let ρ1 be the
value on the left of the wave.

The case of a wave from an outgoing line can be treated similarly.
Lemma 5.5. We have

sgn (∆γ3) · sgn (∆γ4) ≥ 0.
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Lemma 5.6. We have

sgn(γ+
1 − γ1) · sgn(∆γ2) ≥ 0,

where γ1 = f(ρ1).
Lemma 5.7. It holds

TV (f)+out = |∆Γ|.

Lemma 5.8. We have

TV (f)−in = TV (f)+in + |∆Γ|. (5.1)

From Lemmas 5.7 and 5.8, we are ready to state the following:
Lemma 5.9. It holds

TV (f)+ = CTV (f)−.

A ρ-wave produces a Π-wave, but the following lemma holds:
Lemma 5.10. Let J be a junction with at most two incoming lines and two

outgoing ones. Suppose that a ρ-wave (ρ1, ρ10) approaches the junction J . If there
exists δ > 0 such that f(ρ1) > δ > 0, f(ρ1,0) > δ > 0 then there exists C > 0, such
that the variation of the traffic-type functions in outgoing lines is bounded by C times
the flux variation of the interacting wave, i.e.

TV (Π)+ ≤ C

δ
TV (f)−.

Proof. Fix a source s ∈ S and a destination d ∈ D. We denote by πi,0, ρi,0 and
π̂i, ρ̂i(i ∈ {1, 2, 3, 4}) the values of the densities and of the traffic-type functions for s
and d at J , respectively, before and after the interaction of the ρ−wave with J . We
have for j ∈ {3, 4}

|πs,d
j,0 − π̂s,d

j | =

∣∣∣∣∣
α1,s,d,j

J πs,d
1,0f(ρ1,0)

f(ρj,0)
+

α2,s,d,j
J πs,d

2,0f(ρ2,0)
f(ρj,0)

− α1,s,d,j
J πs,d

2,0f(ρ̂1)
f(ρ̂j)

− α2,s,d,j
J πs,d

2,0f(ρ̂2)
f(ρ̂j)

∣∣∣∣∣ ≤

α1,s,d,j
J πs,d

1,0

f(ρj,0)f(ρ̂j)
|f(ρ1,0)f(ρ̂j)−f(ρ̂1)f(ρj,0)|+

α2,s,d,j
J πs,d

2,0

f(ρj,0)f(ρ̂j)
|f(ρ2,0)f(ρ̂j)−f(ρ̂2)f(ρj,0)| ≤

C ′

δ2
|f(ρ1,0)(f(ρ̂j)− f(ρj,0)) + f(ρj,0)(f(ρ1,0)− f(ρ̂1))|+

C ′

δ2
|f(ρ2,0)(f(ρ̂j)− f(ρj,0)) + f(ρj,0)(f(ρ2,0)− f(ρ̂2))| ≤

C ′

δ2
f(ρ1,0)|f(ρ̂j)− f(ρj,0)|+ C ′

δ2
f(ρj,0)|f(ρ1,0)− f(ρ̂1)|+
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C ′

δ2
f(ρ2,0)|f(ρ̂j)− f(ρj,0)|+ C ′

δ2
f(ρj,0)|f(ρ2,0)− f(ρ̂2)| =

C ′

δ
|f(ρ̂j)− f(ρj,0)|+ C ′

δ
|f(ρ1,0)− f(ρ̂1)|+

C ′

δ
|f(ρ̂j)− f(ρj,0)|+ C ′

δ
|f(ρ2,0)− f(ρ̂2)| =

C ′

δ
(|f(ρ̂j)− f(ρj,0)|+ |f(ρ1,0)− f(ρ̂1)|+ |f(ρ2,0)− f(ρ̂2)|) ≤ 2

C ′

δ
TV (f)−

with a suitable constant C ′. Set C = 2C ′.

5.3. Interaction of type I5. We consider interactions of Π-waves with the
junctions. Since Π-waves have always positive speed, they can interact with the
junction only from an incoming line.

Lemma 5.11. Let us consider a junction J and a Π-wave on an incoming line Ii

interacting with J . If A is the distributional matrix for J , whose entries are given by
(3.3), then the interaction of the Π-wave with J modifies only the i-th column of A.
Moreover the variation of the i-th column is bounded by the Π-wave variation.

Proof. For each s ∈ S and a destination d ∈ D, we denote by πs,d
i and πs,d

i,0 ,
respectively, the left and the right states of the Π-wave. Moreover, for every j ∈ {3, 4},
we denote with α−j,i and α+

j,i, respectively, the entries of the matrix A before and after
the interaction of the Π-wave with J . By (3.3), it is clear that, if l 6= i, then the
entries αj,l are not modified. For l = i, we have

|α+
j,i − α−j,i| =

∣∣∣∣∣
∑

s∈S,d∈D
πs,d

i αi,s,d,j
J − ∑

s∈S,d∈D
πs,d

i,0 αi,s,d,j
J

∣∣∣∣∣ ≤

∑
s∈S,d∈D

|πs,d
i − πs,d

i,0 |αi,s,d,j
J .

This completes the proof.
Lemma 5.12. Let us consider a junction J and a Π-wave on an incoming line Ii

interacting with J . Then there exists C > 0, such that the variation of the fluxes is
bounded by C times the Π-wave variation, i.e.

TV (f)+ ≤ CTV (Π)−.

Proof. For simplicity let us consider the case P ∈ Ω where

Ω =
{
(γ1, γ2) ∈ Ω1 × Ω2 : A(γ1, γ2)T ∈ Ω3 × Ω4

}
.

Since the solution of the Riemann Problem depends on the position of the traffic
distribution line rα we consider

|A(π)γT
inc −A(π̂)γT

inc| = |(A(π)−A(π̂))γT
inc| =

∣∣∣∣
(

α3,1(π)− α3,1(π̂) α3,2(π)− α3,2(π̂)
α4,1(π)− α4,1(π̂) α4,2(π)− α4,2(π̂)

) (
γ1

γ2

)∣∣∣∣ =
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|(α3,1(π)−α3,1(π̂))γ1+(α3,2(π)−α3,2(π̂))γ2, (α4,1(π)−α4,1(π̂))γ1+(α4,2(π)−α4,2(π̂))γ2| =

|(α3,1(π)− α3,1(π̂), α4,1(π)− α4,1(π̂))γ1 + (α3,2(π)− α3,2(π̂), α4,2(π)− α4,2(π̂))γ2| ≤

γ1|(α3,1(π)−α3,1(π̂), α4,1(π)−α4,1(π̂))|+ γ2|(α3,2(π)−α3,2(π̂), α4,2(π)−α4,2(π̂))| =

γ1

∣∣∣∣∣

(
∑

s∈S,d∈D
(πs,d

1,0 − π̂s,d
1 )α1,s,d,3

J ,
∑

s∈S,d∈D
(πs,d

1,0 − π̂s,d
1 )α1,s,d,4

J

)∣∣∣∣∣ +

γ2

∣∣∣∣∣

(
∑

s∈S,d∈D
(πs,d

2,0 − π̂s,d
2 )α2,s,d,3

J ,
∑

s∈S,d∈D
(πs,d

2,0 − π̂s,d
2 )α2,s,d,4

J

)∣∣∣∣∣ =

γ1

∣∣∣∣∣
∑

s∈S,d∈D

(
(πs,d

1,0 − π̂s,d
1 )α1,s,d,3

J , (πs,d
1,0 − π̂s,d

1 )α1,s,d,4
J

)∣∣∣∣∣ +

γ2

∣∣∣∣∣
∑

s∈S,d∈D

(
(πs,d

2,0 − π̂s,d
2 )α2,s,d,3

J , (πs,d
2,0 − π̂s,d

2 )α2,s,d,4
J

)∣∣∣∣∣ =

γ1

∣∣∣∣∣
∑

s∈S,d∈D
(πs,d

1,0 − π̂s,d
1 )(α1,s,d,3

J , α1,s,d,4
J )

∣∣∣∣∣ +

γ2

∣∣∣∣∣
∑

s∈S,d∈D
(πs,d

2,0 − π̂s,d
2 )(α2,s,d,3

J , α2,s,d,4
J )

∣∣∣∣∣ ≤

γ1

∑
s∈S,d∈D

|πs,d
1,0 − π̂s,d

1 ||(α1,s,d,3
J , α1,s,d,4

J )|+ γ2

∑
s∈S,d∈D

|πs,d
2,0 − π̂s,d

2 ||(α2,s,d,3
J , α2,s,d,4

J )| =

∑
s∈S,d∈D

(γ1|πs,d
1,0 − π̂s,d

1 ||(α1,s,d,3
J , α1,s,d,4

J )|+ γ2|πs,d
2,0 − π̂s,d

2 ||(α2,s,d,3
J , α2,s,d,4

J )|) ≤

C
∑

s∈S,d∈D
(|πs,d

1,0 − π̂s,d
1 |+ |πs,d

2,0 − π̂s,d
2 |)

for some constant C.

5.4. Existence of solutions for equilibria perturbations. Let us consider
an admissible network (N , I, F , J , S, D, R). We have the following theorem.

Proposition 5.13. Let (ρ̄, Π̄) be an equilibrium on the whole network such that
f(ρ̄) > δ > 0. Define λ̂ = max {f ′(0),−f ′(1)} and

∆t =
mini(bi − ai)

λ̂
,
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which represents the minimum time for a wave to go from a junction to another one.
For 0 < ε < δ/λ̂ there exists t̃ = t̃(δ, ε) such that the following holds. For every
perturbation (ρ̃, Π̃) of the equilibrium with

‖ρ̃‖BV ≤ ε,
∥∥∥Π̃

∥∥∥
BV

≤ ε

and

‖ρ̃− ρ̄‖∞ ≤ ε,
∥∥∥Π̃− Π̄

∥∥∥
∞
≤ ε

there exists an admissible solution (ρ,Π) defined for every t ∈ [0, t̃] with initial datum
(ρ̃, Π̃).

Proof. Denote with (ρν , Πν) a sequence of approximate wave-front tracking solu-
tions with initial data approximating (ρ̃, Π̃). Let us introduce the following notations:

TV (f(ρν(k∆t, ·))) = Tfk,

TV (Πν(k∆t, ·)) = TΠk.

For every interaction of a wave with a junction we have the estimates of Lemmas 5.9,
5.10 and 5.12, therefore

Tfk ≤ Tfk−1 + CTΠk−1,

TΠk ≤ TΠk−1 +
C

δk
Tfk−1,

where δk = δk−1−TV fk−1 and δ0 is such that f(ρ̃) > δ0 > 0 (notice that δ0 > δ− λ̂ε.)
Setting

Tk = max
k

(Tfk, TΠk),

δk = δk−1 − Tk,

we obtain

Tk ≤
(

C

δk
+ 1

)
Tk−1.

The exact computation of the not explosion time for the variation is a bit involved,
so let us assume, for simplicity, that δ is small and consider a continuous evolution.
Defining δ(t) = δ0 − T (t) we obtain

Ṫ (t) ≤ C

δ
T (t) =

CT (t)
δ0 − T (t)

from which we get δ0 ln(T ) − T = δ0 ln(T0) + CT − T0, that implicitly define T =
T (t, δ0, T0). Define t̂ such that T (t̂, δ0, T0) = +∞, then for t ≤ t̃ = t̂/2 there exists a
constant C1 > 0 such that

TV (f(ρν(t, ·))) ≤ C1
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TV (Πν(t, ·)) ≤ C1,

uniformly in ν.
Now, by Helly theorem, Πν and f(ρν) converge by subsequences strongly in L1. More-
over, again by subsequences, ρν converges weakly in L1

loc. We then can complete the
proof as in [6].
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