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Abstract
We construct a model of traffic flow with sources and destinations on a

roads network. The model is based on a conservation law for the density of
traffic and on semilinear equations for traffic-type functions, i.e. functions
describing paths for cars.

We propose a definition of solution at junctions, which depends on
the traffic-type functions. Finally we prove, for every positive time T ,
existence of entropic solutions on the whole network for perturbations of
constant initial data.

Our method is based on the wave-front tracking approach.
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1 Introduction

This paper deals with a model of traffic flow on a road network with sources and
destinations, that are, respectively, areas for which cars start their travels and
areas where they end. A road network is a finite collection of roads, modeled
by closed intervals of R, connected together by junctions.

On each road, we consider the car density ρ and a vector π describing the
traffic types, i.e. the percentages of cars going from a fixed source to a fixed
destination. For the evolution of the density ρ, we use the fluidodynamic model
proposed independently by Lighthill and Whitham [16] in 1955 and by Richards
[17] in 1956. It is based on the conservation of cars and so it is described by the
equation

ρt + f(ρ)x = 0, (1)

where the density ρ(t, x) belongs to [0, ρmax] and the flux f(ρ) is given by ρv,
where v is the average speed of cars. More complex models were also proposed
in [5, 9, 12, 13].
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R. Cozzi 53 — Edificio U5 — 20125 Milano (Italy). (mauro.garavello@unimib.it). Partially
supported by Istituto per le Applicazioni del Calcolo “Mauro Picone” and by Università di
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To deal with the big number of roads, it is customary in transportation sci-
ences to consider complex networks. However, the first papers treating fluido-
dynamic models on a network (and not just on one road) were [7, 8, 11, 14, 15].
In particular, [11] is based on a second order model proposed by Aw and Rascle
[3] in 2000. All these papers determine the behavior at junctions depending
on the car density on each road and some given parameters. A more accurate
model must take into account that drivers choose a given route depending on
their initial and final address. The idea of sources and destinations was already
proposed in 1965; see [10]. In this paper, we develop this idea for the fluidody-
namic model proposed by Lighthill, Whitham and Richards. This means that
cars have a precise path inside the network. Such paths are determined by the
behavior at junctions via the coefficients π.

It is easy to understand that, in each road, the evolution of π follows a
semilinear equation

πt + v(ρ)πx = 0; (2)

hence inside roads the evolution of π is influenced by the average speed of cars,
which we suppose to be a strictly decreasing function of the density.

In [8], Riemann problems at junctions were solved by means of two rules:

(A) cars distribute on outgoing roads according to fixed percentages;

(B) respecting rule (A), the flux is maximized at junctions.

It was proved that (A) and (B) isolate a unique solution and Cauchy prob-
lems were solved via wave-front tracking. Rule (A) can be described by a matrix
A = (αji), where the index i runs over the incoming roads of the junction and
the index j runs over the outgoing roads. In the present paper, the matrix
A is determined via the coefficients π and the rule (B) is replaced by another
maximization procedure. The latter takes into account priorities over incoming
roads and ensures continuity of solutions with respect to the coefficients π (not
granted for the solution chosen in [8]).

Then, to construct a solution on the whole network, we use also in this
case a wave-front tracking method; see [6]. The key point is to derive some
BV estimates on the piecewise constant approximate solutions, in order to have
convergence. Unfortunately it happens that large π-variations may occur at
junctions (produced by ρ-waves of small amplitude). Thus we are able to prove
existence of solutions only for small BV initial data (as it occurs for systems of
conservation laws).

The paper is organized as follows. In Section 2 we give the basic definition for
our model and we describe admissible conditions for the network. In Section 3
we describe in detail the solution of the Riemann problem at junctions and we
also do a comparison with the Riemann problem introduced in [7] and in [8]. In
Section 4, we briefly describe the wave-front tracking method, in Section 5 we
give estimates on the interactions between waves. Finally Section 6 deals with
the existence of solutions.
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2 Basic definitions

We introduce some basic notations and recall some results from [7, 8].

Definition 1 A network is given by a 7-tuple (I,F ,J ,S,D,R,P) where:

Edges I is a finite collection of intervals, called roads, Ii = [ai, bi] ⊆ R, i =
1, . . . , N ;

Fluxes F is a finite collection of fluxes f i : [0, ρi
max] 7→ R;

Junctions J is a finite collection of subsets of {±1, . . . ,±N}. If j ∈ J ∈ J ,
then the road I|j| is crossing at J as entering road (i.e. at point bi) if
j > 0 and as exiting road (i.e. at point ai) if j < 0. For each junction
J ∈ J , we indicate by Inc(J) the set of incoming roads, that are Ii’s such
that i ∈ J and i > 0, while by Out(J) the set of outgoing roads, that are
Ii’s such that −i ∈ J and i > 0;

Sources S is a finite subset of {1, . . . , N}, representing roads connected to
traffic sources;

Destinations D is a finite subset of {1, . . . , N}, representing roads leading to
final destinations;

Traffic distribution functions R is a finite collection of functions rJ : Inc(J)×
S ×D → Out(J);

Right of way parameters P is a finite collection of vectors PJ ∈ Rl and
l = ] Inc(J)− 1.

The meanings of roads, fluxes, junctions, sources and destinations are clear.
Each flow distribution function rJ indicates the direction at the junction J
of traffic that started at source s and has d as final destination. Notice that
we need Inc(J) 6= ∅ and Out(J) 6= ∅ in order rJ to be well defined, and we
give additional conditions later to have a suitable network. The right of way
parameters determine a level of “importance” at the junctions of incoming roads.

On each road Ii, we consider the evolution equation

ρi
t + f i(ρi)x = 0. (3)

Hence the datum on the network is given by a finite collection of functions
ρi : [0, +∞[×Ii 7→ [0, ρi

max], i = 1, . . . , N .
Solutions to equation (3) may develop discontinuities, thus one considers

weak solutions in the sense of distributions. On each road Ii we want ρi to be
a weak entropic solution, that is, for every smooth function ϕ :]0, +∞[×Ii → R
with compact support on ]0, +∞[×]ai, bi[,

∫ +∞

0

∫ bi

ai

(
ρi ∂ϕ

∂t
+ f i(ρi)

∂ϕ

∂x

)
dxdt = 0, (4)
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and for every k ∈ R and ϕ̃ :]0, +∞[×Ii → R smooth, positive with compact
support on ]0, +∞[×]ai, bi[

∫ +∞

0

∫ bi

ai

(
|ρi − k|∂ϕ̃

∂t
+ sgn (ρi − k)(f i(ρi)− f i(k))

∂ϕ̃

∂x

)
dxdt ≥ 0. (5)

Classical theory of conservation laws, see [6], ensures, for every initial data in
L1, the existence of a weak entropic solution to (3) on R. For initial data in
L1 ∩ L∞ solutions depend in a Lipschitz continuous way in the L1 norm.

For each i ∈ S (resp. i ∈ D) and measurable ψi : [0,+∞[→ [0, ρi
max]

we consider solutions verifying the boundary condition ρi(t, ai) = ψi(t) (resp.
ρi(t, bi) = ψi(t)) in the sense of [4].

2.1 Traffic distribution at junctions

The evolution of car densities ρi is thus described on roads and at sources and
destinations. To treat the evolution at junctions, we introduce some definitions.

Fix a junction J and assume for notational simplicity that Inc(J) = {1, . . . , n}
and Out(J) = {n + 1, . . . , n + m}.
Definition 2 A weak solution at the junction J is a collection of functions
ρi : [0, +∞[×Ii → [0, ρi

max], i = 1, . . . , n + m, satisfying

n+m∑

l=0

(∫ +∞

0

∫ bl

al

(
ρl ∂ϕl

∂t
+ f l(ρl)

∂ϕl

∂x

)
dxdt

)
= 0 (6)

for each ϕ1, ..., ϕn+m smooth having compact support in ]0,+∞[×R, that are
also smooth across the junction, i.e.

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj),

for every i = 1, . . . , n, and j = n + 1, . . . , n + m.

Remark 1 Let ρ be a weak solution at a junction J and assume that each
x 7→ ρi(t, x) has bounded variation. We can deduce that it satisfies the Rankine-
Hugoniot Condition at the junction J , namely

n∑

i=1

f i(ρi(t, bi−)) =
n+m∑

j=n+1

f j(ρj(t, aj+)), (7)

for almost every t > 0.

Definition 3 A traffic-type function on a road Ii is a function

πi : [0,∞[×[ai, bi]× S ×D → [0, 1]

such that, for every t ∈ [0,∞[ and x ∈ [ai, bi],
∑

s∈S,d∈D
πi(t, x, s, d) = 1.
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Hence πi(t, x, s, d) specifies the amount of the density ρi(t, x) that started
from source s and is moving towards the final destination d.

Let us now show how a solution at the junction J is constructed using π and
rJ .

Fix a time t and assume that for all i ∈ Inc(J), s ∈ S and d ∈ D, πi(t, ·, s, d)
admits a limit at the junction J , i.e. left limit at bi. For i ∈ {1, . . . , n},
j ∈ {n + 1, . . . , n + m}, set

αj,i =
∑

s∈S,d∈D,rJ (i,s,d)=j

πi(t, bi−, s, d). (8)

Notice that αj,i is the amount of the density ρi that flow towards road Ij . From
the definition of traffic-type functions we get:

αj,i ∈ [0, 1],
∑

j∈Out(J)

αj,i = 1.

The fluxes f j(ρj) to be consistent with the traffic-type functions must satisfy
the following relations:

f j(ρj(·, aj+)) =
n∑

i=1

αj,if
i(ρi(·, bi−)), (9)

for each j = n + 1, ..., n + m. However this is not sufficient to determine a
unique solution. Hence we introduce the concept of admissible weak solution,
using also the right of way parameters.

Definition 4 Let ρ = (ρ1, . . . , ρn+m) be such that ρi(t, ·) is of bounded variation
for every t ≥ 0. Then ρ is an admissible weak solution of (1) at the junction J
related to the matrix A and to the right of way parameters PJ = (p1, . . . , pn−1) ∈
Rn−1

+ if and only if the following properties hold:

(i) ρ is a weak solution at the junction J ;

(ii) f j(ρj(·, aj+)) =
n∑

i=1

αj,if
i(ρi(·, bi−)), for each j = n + 1, ..., n + m;

(iii)

c2

n∑

i=1

f i(ρi(·, bi−))− c1

[
dist((f1(ρ1(·, b1−)), . . . , fn(ρn(·, bn−))), r)

]2

is maximum subject to (ii), where c1 and c2 are strictly positive constants,
and dist(·, r) denotes the euclidean distance in Rn from the line r, which
is given by 




γn = p1γ1,
...
γn = pn−1γn−1.
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Remark 2 Condition (7) is automatically guaranteed by condition (9).
Conditions (i) and (ii) do not suffice to solve Riemann problems at junctions

in a unique way. Thus one has to impose some modelling assumptions. A
further possibility could be to impose

(f1(ρ1(·, b1−)), . . . , fn(ρn(·, bn−))) ∈ r

and then to maximize with respect to a free parameter. Unfortunately this choice
is not realistic. In fact, let us consider a simple junction with 2 incoming roads
and 1 outgoing road. If the outgoing road and one incoming road are empty, then
just the origin in the (γ1, γ2) plane satisfies the previous conditions. Therefore
for this model, no car passes through the junction, which is clearly anti intuitive.

If we substitute property (iii) of Definition 4 with the following

(iii’)
n∑

i=1

f i(ρi(·, bi−)) is maximum subject to (ii),

i.e. we are considering the same solution as in [8], then uniqueness is not
granted. In fact condition (C) in [8], necessary for uniqueness, may fail. More-
over, with this choice, the solution for the fluxes does not depend in a continuous
way by the matrix A, which is the case for our quadratic maximization.

2.2 Evolution equations for traffic-type functions

We assume the followings. Inside each road Ii, cars move at some averaged
speed vi that depends on the local density ρi. Moreover vi is independent from
π. In this case the flux function is given by:

f i(ρi) = vi(ρi) ρi.

If x(t) denotes a trajectory of a car inside the road Ii, then we get

πi(t, x(t), s, d) = const.

Taking the total differential with respect to the time, we deduce the semilinear
equation:

∂tπ
i(t, x, s, d) + ∂xπi(t, x, s, d) · vi(ρi(t, x)) = 0. (10)

This equation is coupled with equation (3). More precisely on road Ii equation
(10) depends on the solution of (3), while in turn at junctions the values of πi

determine the traffic distribution on outgoing roads as explained in the previous
section.

2.3 Admissible networks and solutions

Let us now give some admissibility conditions on the network.

Definition 5 A network (I,F ,J ,S,D,R,P) is admissible if the following con-
ditions hold.
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1. Each f i ∈ F is given by f i(ρi) = vi(ρi)ρi, where vi, the velocity field, is
smooth, strictly decreasing, and vi(ρi

max) = 0.

2. Each f i ∈ F is a smooth strictly concave function with

f i(0) = f i(ρi
max) = 0.

Thus there exists a unique σi ∈]0, ρi
max[ global maximum with (f i)′(σi) =

0.

3. Each i ∈ {±1, . . . ,±N} belongs to at most one J ∈ J .

4. For each i ∈ {1, . . . , N}, exactly one of the following cases happens:

(a) there exists J ∈ J such that i ∈ J ∩ S;

(b) there exists J ∈ J such that −i ∈ J and i ∈ D;

(c) there exist J, J ′ ∈ J such that i ∈ J and −i ∈ J ′.

5. S ∩ D = ∅.
6. For every J ∈ J , PJ ∈]0,+∞[l, where l = ] Inc(J)− 1.

7. For every s ∈ S and d ∈ D, the functions rJ determine a unique path,
that is a finite sequence of roads-junctions Ii1 , Jl1 , · · · , Iik

, Jlk , Iik+1 such
that

(a) i1 = s, ik+1 = d;

(b) ih ∈ Inc(Jlh) for every h ∈ {1, . . . , k};
(c) Jlh 6= Jlh′ for every h, h′ ∈ {1, . . . , k}, h 6= h′;

(d) rJlh
(ih, s, d) = ih+1 for every h ∈ {1, . . . , k}.

Remark 3 The first two conditions in the previous definition are needed to
have consistency to the model. In particular we assume that the speed of cars
is decreasing with respect to the quantity of cars in roads and is equal to zero
when the density is maximum; hence the flux must be zero if the density is
maximum. For some traffic model vi may explode at 0. Moreover the concavity
condition of the flux implies that the speed of ρ-waves may vary in the interval
[f i′(ρi

max), f i′(0)].
Conditions 3. and 4. imply that each road is connected at least with one

junction and that each road either can be connected with a source and a junction,
or can be connected with a destination and a junction or finally can be connected
with two junctions.

Condition 5. ensures to avoid path triviality.
Condition 6. gives admissible weights for priorities of incoming roads of

junctions.
Finally condition 7. implies existence and uniqueness for paths connecting

each source and each destination.
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Given an admissible network we have to specify how to define a solution in
relation to sources, destinations and junctions. For sources and junctions it is
enough to use the same definition of [4].

Definition 6 Consider an admissible network (I,F ,J ,S,D,R,P). A set of
Initial-Boundary Conditions (briefly IBC) is given assigning measurable func-
tions ρ̄i : Ii → [0, ρi

max], π̄i : [ai, bi]×S×D → [0, 1], i = 1, . . . , N and measurable
functions ψi : [0, +∞[→ [0, ρi

max], i ∈ S ∪ D with the property that for every
s ∈ S and d ∈ D, π̄i(·, s, d) = 0 whenever Ii does not belong to the path for the
source s and destination d defined at the point 7 of Definition 5.

Definition 7 Consider an admissible network (I,F ,J ,S,D,R,P) and a set
of IBC. A set of functions ρ = (ρ1, . . . , ρN ) with ρi : [0, +∞[×Ii → [0, ρi

max]
continuous as functions from [0, +∞[ into L1, and Π = (π1, . . . , πN ) with πi :
[0, +∞[×Ii × S × D → [0, 1], continuous as functions from [0, +∞[ into L1 for
every s ∈ S, d ∈ D, is an admissible solution if the following holds. Each ρi is a
weak entropic solution to (3) on Ii, ρi(0, x) = ρ̄i(x) for almost every x ∈ [ai, bi],
ρi(t, ai) = ψi(t) if i ∈ S and ρi(t, bi) = ψi(t) if i ∈ D in the sense of [4].
Each πi is a weak solution to the corresponding equation (10). Finally at each
junction ρ is a weak solution and is an admissible weak solution for Π in case
of bounded variation.

Regarding sources and destinations, the treatment of boundary data in the
sense of [4] can be done in the same way as in [1, 2]. Thus we treat the con-
struction of solutions only inside the network.

3 The Riemann Problem

In this section we consider solutions to Riemann problems at junctions. This
is the basic ingredient to define a wave-front tracking algorithm to construct
solutions.

A Riemann problem is a Cauchy problem for an initial datum of Heaviside
type, that is piecewise constant with only one discontinuity. Such solutions are
formed by continuous waves called rarefactions and by traveling discontinuities
called shocks. The speed of waves are related to the values of f ′(ρ). Entropic
solutions to Riemann problems on roads are described for example in [6].

We need to define a solution for a Riemann problem at junctions. A Riemann
problem at a junction is a Cauchy problem with constant initial data on each
road of the junction. Moreover a Riemann solver at a junction is a function
which gives, for each initial condition, a solution to the corresponding Riemann
problem.

Consider a junction J in which there are n roads with incoming traffic and
m roads with outgoing traffic. For simplicity we indicate by

(t, x) ∈ R+ × Ii 7→ ρi(t, x) ∈ [0, ρi
max], i = 1, . . . , n, (11)
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the densities of the cars on the road with incoming traffic and

(t, x) ∈ R+ × Ij 7→ ρj(t, x) ∈ [0, ρj
max], j = n + 1, ..., n + m, (12)

those on the roads with outgoing traffic.
Without loss of generality, we assume that the fluxes f i, f j (i ∈ {1, . . . , n},

j ∈ {n + 1, . . . , n + m}) are all the same and we indicate them with f . Hence
we assume ρi

max = ρj
max = 1 and we have σ = σi = σj for every i ∈ {1, . . . , n}

and j ∈ {n + 1, . . . , n + m}.
We need some more notation:

Definition 8 Let τ : [0, 1] → [0, 1] be the map such that:

1. f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];

2. τ(ρ) 6= ρ for every ρ ∈ [0, 1] \ {σ}.

Clearly, τ is well defined and satisfies

0 ≤ ρ ≤ σ ⇐⇒ σ ≤ τ(ρ) ≤ 1, σ ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τ(ρ) ≤ σ.

Theorem 1 Let (I,F ,J ,S,D,R,P) be an admissible network and J a junc-
tion with n incoming roads and m outgoing ones. For every ρ1,0, ..., ρn+m,0 ∈
[0, 1], and π1,s,d, . . . , πn+m,s,d ∈ [0, 1] (s ∈ S, d ∈ D), there exist a unique admis-
sible weak solution, in the sense of Definition 4, ρ =

(
ρ1, ..., ρn+m

)
and traffic-

type functions (π1(·, ·, s, d), . . . , πn+m(·, ·, s, d)) at the junction J such that

ρ1(0, ·) ≡ ρ1,0, . . . , ρ
n+m(0, ·) ≡ ρn+m,0,

π1(0, ·, s, d) = π1,s,d, . . . , πn+m(0, ·, s, d) = πn+m,s,d, (s ∈ S, d ∈ D).

Moreover for every i ∈ {1, . . . , n} there exists ρ̂i such that the solution for
the density in Ii is given by the wave generated by the Riemann problem with
initial data (ρi,0, ρ̂i), while for every j ∈ {n + 1, . . . , n + m} there exists ρ̂j such
that the solution for the density in Ij is given by the wave generated by the
Riemann problem with initial data (ρ̂j , ρj,0).

Moreover πi(t, ·, s, d) = πi,s,d for every t ≥ 0, i ∈ {1, . . . , n}, s ∈ S, d ∈ D
and

πj(t, aj+, s, d) =
∑n

i=1 πi,s,df(ρ̂i)
f(ρ̂j)

(13)

for every t ≥ 0, j ∈ {n + 1, . . . , n + m}, s ∈ S, d ∈ D.

Proof. In Rn, define r to be the linear subspace




γn = p1γ1,
...
γn = pn−1γn−1,

(14)
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which is clearly a line in Rn by Definition 5. Consider the function E : Rn → R
defined by

E(γ1, . . . , γn) = c2

n∑

i=1

γi − c1[dist((γ1, . . . , γn), r)]2, (15)

where dist(·, r) denotes the usual euclidean distance in Rn from r. Moreover,
as in [8], we define the sets

Ωi :=
{

[0, f(ρi,0)], if 0 ≤ ρi,0 ≤ σ,
[0, f(σ)], if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n,

Ωj :=
{

[0, f(σ)], if 0 ≤ ρj,0 ≤ σ,
[0, f(ρj,0)], if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m,

and

Ω :=
{
(γ1, . . . , γn) ∈ Ω1 × · · · × Ωn : A · (γ1, . . . , γn)T ∈ Ωn+1 × · · · × Ωn+m

}
,

(16)
where the entries αj,i of the matrix A are given by (8). The set Ω is clearly
convex, compact and not empty. To define the solution to the Riemann problem
at J we have to solve the maximization problem

sup
(γ1,...,γn)∈Ω

E(γ1, . . . , γn). (17)

Since E is a continuous function and Ω is a compact set, the maximization prob-
lem admits a solution. Let us suppose that (γ̂1, . . . , γ̂n) ∈ Ω and (γ̃1, . . . , γ̃n) ∈ Ω
satisfy

E(γ̂1, . . . , γ̂n) = E(γ̃1, . . . , γ̃n) = sup
(γ1,...,γn)∈Ω

E(γ1, . . . , γn). (18)

The Hessian matrix of E is clearly equal to the Hessian matrix of the function

−c1 [dist((γ1, . . . , γn), r)]2 , (19)

since the term c2

∑n
i=1 γi is linear. If (ν1, . . . , νn) is an orthogonal system where

the first coordinate has the same direction of r, then the Hessian matrix of (19)
has the form

−2c1




0 0 · · · 0
0
... In−1

0


 , (20)

where In−1 is the (n−1)×(n−1) identity matrix. Clearly (20) is a semi-negative
definite matrix. This analysis shows that if z1, z2 ∈ Rn, z1 6= z2 and the line
through z1 and z2 is not parallel to r, then

E(λz1 + (1− λ)z2) > λE(z1) + (1− λ)E(z2) (21)
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for every λ ∈ (0, 1).
Suppose by contradiction that (γ̂1, . . . , γ̂n) 6= (γ̃1, . . . , γ̃n). If the line through

these two points is parallel to r, then (15) and (18) give

c2

n∑

i=1

(γ̂i − γ̃i) = 0

and so (γ̂1, . . . , γ̂n) = (γ̃1, . . . , γ̃n) since r intersects the hyperplane
∑n

i=1 γi = 0
just in the origin. Therefore (18) implies that the line through (γ̂1, . . . , γ̂n) and
(γ̃1, . . . , γ̃n) is not parallel to r and so (21) gives

E(λ(γ̂1, . . . , γ̂n) + (1− λ)(γ̃1, . . . , γ̃n))>λE(γ̂1, . . . , γ̂n) + (1− λ)E(γ̃1, . . . , γ̃n)
= sup

(γ1,...,γn)∈Ω

E(γ1, . . . , γn)

for every λ ∈ (0, 1), which is a contradiction. Therefore (γ̂1, . . . , γ̂n) is equal to
(γ̃1, . . . , γ̃n), i.e. the point of maximum of E is unique.

For every i ∈ {1, ..., n}, we choose ρ̂i ∈ [0, 1] such that

f(ρ̂i) = γ̂i, ρ̂i ∈
{ {ρi,0}∪]τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,

[σ, 1], if σ ≤ ρi,0 ≤ 1.

Assumptions on f imply that ρ̂i exists and is unique. Let

γ̂j
.=

n∑

i=1

αjiγ̂i, j = n + 1, ..., n + m,

and ρ̂j ∈ [0, 1] be such that

f(ρ̂j) = γ̂j , ρ̂j ∈
{

[0, σ], if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[, if σ ≤ ρj,0 ≤ 1.

Since (γ̂1, ..., γ̂n) ∈ Ω, ρ̂j exists and is unique for every j ∈ {n + 1, . . . , n + m}.
Solving the Riemann Problem (see [6, Chapter 6]) on each road, the first claim
is proved.

The speeds vi of the traffic-type functions are positive; hence

πi(t, ·, s, d) = πi(0, ·, s, d) = πi,s,d

for every t ≥ 0, i ∈ {1, . . . , n}, s ∈ S, d ∈ D. Finally, if t ≥ 0, j ∈ {n +
1, . . . , n + m}, s ∈ S, d ∈ D, then πj(t, aj+, s, d) is the percentage of ρj(t, aj+)
which corresponds to cars going from the source s to the destination d. Therefore
it corresponds to the ratio

∑n
i=1 πi,s,df(ρ̂i)

f(ρ̂j)
,

that is the quantity of cars going from s to d over the global amount of cars in
Ij . 2
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Remark 4 Notice that it may happen that a single road is the unique constraint
for the maximization problem (17). This is due to the fact that the level curves
of the function E are paraboloids and the solution to the maximization problem
can be given by the tangent point to a level curve of E with a face of the boundary
of Ω.

Remark 5 The solution to the Riemann problem at junctions is different from
those introduced in [7] and [8].

Indeed, the solution of the Riemann problem given in [8] requires an addi-
tional condition (C), necessary for uniqueness, and that junctions have not two
incoming and one outgoing roads, while the solution in [7] is equal to that in
[8] except for the fact that the case of a junction with two incoming and one
outgoing road is covered.

We recall here for reader’s convenience the statement of condition (C) of [8].

(C) Let {e1, . . . , en} be the canonical basis of Rn and for every subset V ⊂ Rn

indicate by V ⊥ its orthogonal. Define for every i = 1, . . . , n, Hi = {ei}⊥,
i.e. the coordinate hyperplane orthogonal to ei and for every j = n +
1, . . . , n + m let αj = (αj1, . . . , αjn) ∈ Rn and define Hj = {αj}⊥. Let K
be the set of indices k = (k1, ..., k`), 1 ≤ ` ≤ n − 1, such that 0 ≤ k1 <

k2 < · · · < k` ≤ n + m and for every k ∈ K set Hk =
⋂̀

h=1

Hkh
. Letting

1 = (1, . . . , 1) ∈ Rn, we assume that for every k ∈ K,

1 /∈ H⊥
k .

The choice of [8] and [7] is not good for this paper for the following reasons.

1. Since the matrix A is given by formula (8), to satisfy condition (C) we
would need to impose some assumptions on the traffic-type functions, which
are very technical and not meaningful from modeling point of view.

2. The solution to the Riemann problem at the junction does not depend in
a continuous way from the coefficients π. Indeed a small variation on the
coefficients of A may create a big variation in the solution of a Riemann
problem.

On the contrary, the solution given here does not require condition (C) on
the matrix A and satisfies the property that small changes in the coefficients of
A produces small changes in the solution for the fluxes.

Remark 6 Clearly the solution to the Riemann problem at a junction involves
also the values of traffic-type functions, since they determine the entries of the
matrix A. More precisely, only the values of the traffic-type functions in incom-
ing roads influence the matrix A, while the values of the traffic-type functions in
outgoing roads are determined by the solution of the Riemann problem for the
density.
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Remark 7 Condition 7 in Definition 5 imply that, for every Initial-Boundary
Condition and s ∈ S, d ∈ D, at most one i ∈ {1, . . . , n} is such that πi,s,d 6= 0.
Therefore (13) can be rewritten in the following way: for every s ∈ S, d ∈ D,
j ∈ {n + 1, . . . , n + m}, there exists i ∈ {1, . . . , n} such that

πj(t, aj+, s, d) =
πi,s,df(ρ̂i)

f(ρ̂j)
. (22)

3.1 Junctions with two incoming and two outgoing roads

Let us introduce the definition of equilibrium for a Riemann problem at a junc-
tion and the definition of genericity for an equilibrium.

Definition 9 Let J be a junction with n incoming roads, say I1, . . . , In, and m
outgoing roads, say In+1, . . . , In+m, and let A be a fixed distributional matrix at
J .

We say that (ρ1, . . . , ρn+m) is an equilibrium at J if the solution (ρ̂1, . . . , ρ̂n+m)
to the Riemann problem at J with the initial data (ρ1, . . . , ρn+m) coincides with
(ρ1, . . . , ρn+m).

We say that (ρ1, . . . , ρn+m) is a generic equilibrium to the Riemann problem
at J if the following two conditions are satisfied:

1. the set Ω defined in (16) is different from {(0, . . . , 0)};
2. either the solution to the maximization problem (17) belongs to the interior

of one faces of Ω or belongs to a vertex of Ω generated by the intersection
of exactly n faces of Ω.

Fix a junction J with two incoming roads I1, I2 and two outgoing ones I3

and I4, consider a distributional matrix

A =
(

α β
1− α 1− β

)
(23)

and suppose that α > β and 0 < p1 < 1. We study in detail equilibria (i.e.
constant solutions) for the Riemann problem at J when a single road is the
unique active constraint for the maximization problem (17). In this case the
function E : R2 → R, defined by

E(γ1, γ2) = c2(γ1 + γ2)− c1[dist((γ1, γ2), r)]2,

can be explicitly rewritten in the form

E(γ1, γ2) = − c1

1 + p2
1

(γ2 − p1γ1)2 + c2(γ1 + γ2). (24)

Dini’s implicit function theorem implies that the maximum (γ̄1, γ̄2) of E over
Ω satisfies:

1. γ̄2 = p1γ̄1 + (1+p2
1)c2

2c1
, provided the road I1 is the only active constraint;
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Active constraints new Riemann solver C-G-P Riemann solver
1 I1 yes no
2 I1 and I2 yes yes
3 I1 and I3 yes no
4 I1 and I4 yes yes
5 I2 yes no
6 I2 and I3 yes yes
7 I2 and I4 yes no
8 I3 yes no
9 I3 and I4 yes yes

10 I4 yes no

Table 1: equilibria for the Riemann solver introduced in this paper and for the
Riemann solver introduced in [8] when α > β.

2. γ̄2 = p1γ̄1 − (1+p2
1)c2

2c1p1
, provided the road I2 is the only active constraint;

3. γ̄2 = p1γ̄1 + (1+p2
1)c2(α−β)

2c1(α+p1β) , provided the road I3 is the only active con-
straint;

4. γ̄2 = p1γ̄1 + (1+p2
1)c2(β−α)

2c1(p1+1−α−p1β) , provided the road I4 is the only active con-
straint.

Moreover the axis for the parabolas which are level curves of E in the (γ1, γ2)
coordinates is given by the line

γ2 = p1γ1 +
c2(1− p1)

2c1
. (25)

Table 1 describes all the possible generic equilibria both for the Riemann
solver introduced in this paper and for that in [8] (briefly C-G-P Riemann
solver). Notice that equilibria with only one active constraint are not admissible
for the Riemann solver in [8]. Moreover some other types of equilibria (3 and 7
in table 1) are not admissible for the Riemann solver in [8].

If we impose conditions on f(σ), then not all cases can happen as shown by
next results.

Lemma 1 If f(σ) <
c2(1+p2

1)(α−β)
2c1p1(p1+1−p1β−α) , the equilibria 5, 7 and 10 in table 1

can not happen.
If f(σ) <

c2(1+p2
1)(α−β)

2c1(p1β+α) , the equilibria 1, 3 and 8 in table 1 can not happen.

Proof. If f(σ) <
c2(1+p2

1)(α−β)
2c1p1(p1+1−p1β−α) , then the region between the lines

γ2 = p1γ1 − (1 + p2
1)c2

2c1p1
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and

γ2 = p1γ1 +
(1 + p2

1)c2(β − α)
2c1(p1 + 1− α− p1β)

in the (γ1, γ2) plane do not intersect Ω and so the first statement holds. In the
same way the second statement is proved. 2

Corollary 1 If f(σ) < min
{

c2(1+p2
1)(α−β)

2c1p1(p1+1−p1β−α) ,
c2(1+p2

1)(α−β)
2c1(p1β+α)

}
, then the Rie-

mann solver introduced in this paper and that introduced in [8] have the same
types of equilibria.

Finally, for a simple network consisting of a single junction, we get the
following proposition.

Proposition 1 Let us consider a road network with just one junction J , two in-
coming roads I1 and I2 and two outgoing roads I3 and I4. Assume that in incom-
ing roads there are not Π-waves, so that the matrix A for the junction J is fixed
and given by (23). If α > β and f(σ) < min

{
c2(1+p2

1)(α−β)
2c1p1(p1+1−p1β−α) ,

c2(1+p2
1)(α−β)

2c1(p1β+α)

}
,

then all estimates in [8] for waves interacting with J hold. Hence for every pos-
itive time T > 0, an entropic solution on [0, T ] exists on the network.

Proof. By Corollary 1, we know that C-G-P Riemann solver and the Riemann
solver introduced in this paper have the same kinds of equilibrium. A deeper
analysis shows that an arbitrary initial datum (ρ1,0, ρ2,0, ρ3,0, ρ4,0) for the den-
sity at J produces the same solution (ρ̂1, ρ̂2, ρ̂3, ρ̂4) both for the C-G-P Riemann
solver and for the Riemann solver introduced in this paper. In fact the set Ω,
defined in (16) is clearly the same for the two Riemann solver . Moreover each
maximization procedure implies that the maximum is on the boundary of Ω.
The maximum, by hypotheses, can be only at a vertex of Ω and the vertex must
be the same, since either the roads I1 and I2 or the roads I1 and I4 or the
roads I2 and I3 or the roads I3 and I4 can be the active constraints, as shown
in Table 1. The estimates in [8] depend only on the solution of the Riemann
problem and not on the Riemann solver used. Therefore we conclude. 2

4 Wave-front tracking algorithm

In this section a wave-front tracking algorithm is given for admissible solutions
(ρ, Π) in the sense of Definition 7. As in [8], we use the approach of Bressan;
see [6].

For every s ∈ S and d ∈ D, along each road we need to solve the system
{

ρi
t(t, x) + f i(ρi(t, x))x = 0,

πi
t(t, x, s, d) + vi(ρi(t, x))πi

x(t, x, s, d) = 0.
(26)
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First one takes piecewise constant approximations, in L1, ρi
n, πi

n, of the initial
data ρ̄i, π̄i.

Then we construct a solution for the density solving all the Riemann prob-
lems until an interaction between two ρ-waves or between a ρ-wave with a junc-
tion. Rarefactions are approximated by rarefaction shock fans always inserting
the value σi when possible. The speed of a rarefaction shock is set to be the
value of (f i)′ at its left endpoint, with the exception that every rarefaction shock
with endpoint σi has zero speed. Then we construct the solution for the traffic-
type functions on the same interval of times. If an interaction of a Π-wave with
a junction occurs, then we come back to this interaction time, we consider the
new distribution matrix at the junction and we recalculate the solution for the
density until the first interaction time. Repeating this procedure inductively,
we are able to construct a wave-front tracking approximate solution.

To achieve the construction one needs estimates on the number of waves and
on the total variation of the solution.

The bound on the number of waves is immediate on roads and, due to finite
speed of propagation, it follows easily also on the whole network. The estimate of
the total variation is the more delicate issue and is based on some approximation
procedures and on basic interaction estimates, shown in the next section.

5 Basic estimates of interactions

Let us consider an admissible network (I,F ,J ,S,D,R,P) . Without loss of
generality, we assume that ρi

max = 1 and f i = f for every road of the network.
Hence σi = σ for every i ∈ {1, . . . , n}. Moreover in this section we do the
following assumption:

(A1) every junction J ∈ J has at most two incoming roads and at most two
outgoing roads.

Let us consider an equilibrium (ρ̄, Π̄) on the whole network, that is an ad-
missible solution constant in time.

Definition 10 Let J be a junction and let us consider an equilibrium at J . We
say that the equilibrium is of the first type if there are exactly two active con-
straints for the maximization problem (17) and the corresponding hyperplanes
are not tangent to a level curve of E at the equilibrium.

We say that the equilibrium is of the second type if there is exactly one active
constraint for the maximization problem (17).

We also assume for the rest of the section:

(A2) for every J ∈ J , the equilibrium is generic.

Remark 8 A generic equilibrium for the Riemann problem at a junction is ei-
ther of the first type or of the second type. Other types of equilibria are not
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generic, because there is at least one active constraint redundant for the maxi-
mization problem (17).

For example, consider a junction J with two incoming roads I1, I2 and two
outgoing roads I3, I4, for which the matrix A is given by

(
1
2

1
2

1
2

1
2

)

and 0 < p1 < 1. Let (ρ1, ρ2, ρ3, ρ4) be an equilibrium such that

0 < ρ1 < σ, σ < ρ2 < 1, σ < ρ3 < 1, 0 < ρ4 < σ,

f(ρ1) =
1
2
, f(ρ2) =

p1

2
, f(ρ3) = f(ρ4) =

1 + p1

2
.

In this case the roads I1 and I3 are active constraint. Also (ρ̃1, ρ2, ρ3, ρ4) with
σ < ρ̃1 < 1, f(ρ̃1) = 1

2 is an equilibrium, but in the second case only the road I3

is an active constraint. So the first equilibrium is not generic, while the second
one is.

Our aim is to prove an existence result for a solution (ρ, Π) in the case of a
small perturbation of the equilibrium (ρ̄, Π̄).

We have to consider the following types of interactions:

T1. interaction of ρ-waves with ρ-waves on roads;

T2. interaction of ρ-waves with Π-waves on roads;

T3. interaction of Π-waves with Π-waves on roads;

T4. interaction of ρ-waves with junctions;

T5. interaction of Π-waves with junctions.

Interaction of type T1 is classical and the total variation of the density
decreases. Interaction of type T3 can not happen since Π-waves travel with
speed depending only on the value of ρ.

Remark 9 Hypothesis (A2) is fundamental in the next analysis, since it per-
mits to reduce the number of events at junctions and moreover since it excludes
the possibility that an outgoing road becomes saturate.

Hypothesis (A2) can be relaxed, but can not be totally eliminated. In fact, if
an outgoing road becomes saturated, then some of the next estimates are false.

5.1 Interaction of type T2

Let us consider a road Ii. First we note that the characteristic speed of a density
is smaller than the speed of a Π-wave, as next lemma shows.
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Lemma 2 Let ρ ∈ [0, 1] be a density and let λ(ρ) be its characteristic speed.
Then λ(ρ) ≤ v(ρ) and the equality holds if and only if ρ = 0.

Proof. By definition, the speed v is strictly decreasing with respect to the
density ρ and the flux f is given by f(ρ) = ρv(ρ). This implies that

λ(ρ) = f ′(ρ) = v(ρ) + ρv′(ρ) ≤ v(ρ). (27)

Clearly, if ρ = 0, then λ(0) = v(0), while if ρ > 0, then λ(ρ) < v(ρ). 2

Lemma 3 Let us consider a shock wave connecting ρ− and ρ+. Then:

1. λ(ρ−, ρ+) < v(ρ−);

2. λ(ρ−, ρ+) ≤ v(ρ+) and the equality holds if and only if ρ− = 0.

Proof. We have ρ− < ρ+ and so v(ρ−) > v(ρ+). Thus the first inequality is a
direct consequence of the second one. Moreover, the speed of a shock wave is
given by the Rankine-Hugoniot condition

λ(ρ−, ρ+) =
f(ρ+)− f(ρ−)

ρ+ − ρ−
. (28)

Since f(ρ) = ρv(ρ), we have that

λ(ρ−, ρ+) ≤ v(ρ+) (29)

if and only if
ρ+v(ρ+)− ρ−v(ρ−) ≤ ρ+v(ρ+)− ρ−v(ρ+), (30)

which is satisfied if and only if

ρ−v(ρ−) ≥ ρ−v(ρ+). (31)

The last inequality is clearly true. Notice that if ρ− 6= 0 all the previous in-
equalities are strict inequalities. 2

Remark 10 If we have a shock wave (ρ−, ρ+) with ρ− > 0, then by the previous
lemma a Π-wave can cross the ρ-wave from the left, since v(ρ−) > v(ρ+) >
λ(ρ−, ρ+), that is the speed of the Π-wave when ρ = ρ− is strictly greater than
the speed of the Π-wave when ρ = ρ+, which is strictly greater than the speed of
the ρ-wave given by the Rankine-Hugoniot condition; see figure 1.

If instead ρ− = 0, then a Π-wave can interact with the ρ-wave since v(0) >
λ(ρ−, ρ+), but then the discontinuity in Π travels with the same speed of the
ρ-wave; see figure 2.
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ρ − ρ +

Figure 1: shock wave with ρ− > 0. The speed of the Π-waves is described by
the arrows.

0 ρ +

Figure 2: shock wave with ρ− = 0. The speed of the Π-waves is described by
the arrows.
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ρ − ρ +

Figure 3: rarefaction shock fan. The speed of the Π-waves is described by the
arrows.

Lemma 4 Let us consider a rarefaction shock fan connecting ρ− and ρ+. Then
v(ρ+) > v(ρ−) > f ′(ρ−).

Proof. We have ρ− > ρ+ and so v(ρ−) < v(ρ+). Moreover, v(ρ−) > f ′(ρ−)
if and only if v(ρ−) > v(ρ−)+ρ−v′(ρ−) and the last inequality is clearly true. 2

Remark 11 If we consider a rarefaction shock fan (ρ−, ρ+), then the previous
lemma shows that a Π-wave can cross the ρ-wave, since v(ρ+) and v(ρ−) are both
strictly greater than the speed f ′(ρ−) of the rarefaction shock fan; see figure 3.

Remark 12 In principle, it is reasonable that the speed of a rarefaction fan can
be chosen in the interval [f ′(ρ−), f ′(ρ+)]. Once we choose f ′(ρ−) as the speed
of a rarefaction fan, lemma 4 ensures that the speeds of Π-waves when ρ = ρ−

or ρ = ρ+ are faster than the speed of the rarefaction fan.
If we choose another value λ ∈ [f ′(ρ−), f ′(ρ+)] for the speed of the rar-

efaction fan, then it may be happen that v(ρ−) < λ ≤ v(ρ+) and this creates
a problem to construct a wave front-tracking approximate solution for π; see
figure 4.

Putting together the previous lemmas we obtain the following result.

Proposition 2 An interaction of a ρ-wave with a Π-wave can happen only if the
Π-wave interacts from the left respect to the ρ-wave. Moreover if this happens,
then the ρ-wave does not change, while the Π-wave changes only its speed.

5.2 Interaction of type T4

We consider interactions of ρ-waves with junctions. In general these interactions
produce an increment of the total variation of the flux and of the density in all
the roads and a variation of the values of traffic-type functions on outgoing
roads. As in [8], we can control the total variation of the flux. Indeed we have
the following.

20



ρ − ρ +

?

Figure 4: rarefaction shock fan with speed λ > v(ρ−). How to define a wave
front-tracking approximate solution for the traffic distribution functions?

Lemma 5 Let J be a junction with at most two incoming roads and two outgo-
ing ones. Let us suppose that a ρ-wave approaches the junction J and assume
(A2). If the total variation of the ρ-wave is sufficiently small, then there exists
C > 0, depending only on the values of the traffic-type functions on incoming
roads, such that the total variation of the flux after the wave approaches J is
bounded by C times the flux variation of the interacting wave, i.e.

Tot.Var.+f ≤ CTot.Var.−f .

Proof. If the equilibrium at J is of the first type, then the conclusion follows
directly from the proof of Lemma 5.6 in [8].

Therefore assume that the equilibrium is of the second type. In this case
only one road is an active constraint for the Riemann problem at J . If the
total variation of the interacting wave is sufficiently small, then the wave mod-
ifies the equilibrium at J if and only if it arrives from the road which is the
active constraint, and the equilibrium type does not change, i.e. the constraint
remains the same after the interaction. We consider only the case where the
first incoming road I1 is the active constraint, the other cases being similar. We
denote by (γ1,0, . . . , γ4,0) the fluxes of the equilibrium at J , by γ1 the flux of
the interacting wave and by (γ̂1, . . . , γ̂4) the fluxes of the new equilibrium for
the Riemann problem at J . As in subsection 3.1, we note that

γ2,0 = p1γ1,0 +
(1 + p2

1)c2

2c1
, γ̂2 = p1γ̂1 +

(1 + p2
1)c2

2c1
, γ1 = γ̂1. (32)

Thus
Tot.Var.−f = |γ1 − γ1,0|

and
Tot.Var.+f = |γ̂2 − γ2,0|+ |γ̂3 − γ3,0|+ |γ̂4 − γ4,0| .

If γ1 < γ1,0, then γ̂2 < γ2,0, γ̂3 < γ3,0 and γ̂4 < γ4,0. Therefore

Tot.Var.+f = (γ2,0 − γ̂2) + (γ3,0 − γ̂3) + (γ4,0 − γ̂4)
= (γ2,0 − γ̂2) + α3,1(γ1,0 − γ1) + α3,2(γ2,0 − γ̂2)

+(1− α3,1)(γ1,0 − γ1) + (1− α3,2)(γ2,0 − γ̂2),

21



since γ3 = α3,1γ1 + α3,2γ2 and γ4 = (1− α3,1)γ1 + (1− α3,2)γ2. Using (32) we
conclude that

Tot.Var.+f = 2(γ2,0 − γ̂2) + (γ1,0 − γ1) = (1 + 2p1)(γ1,0 − γ1)

= (1 + 2p1)Tot.Var.−f .

If γ1 > γ1,0, then the same calculation shows that

Tot.Var.+f = (1 + 2p1)(γ1 − γ1,0) = (1 + 2p1)Tot.Var.−f .

This concludes the proof. 2

Remark 13 Notice that the total variation of the flux can increase also when
a wave interacts with a junction from an incoming road even if we start from
an equilibrium of the first type. In fact, let us consider a junction J with two
incoming roads (I1 and I2) and two outgoing ones (I3 and I4) and we suppose
that the active constraints are given by the roads I1 and I3. If a wave interacts
with J from I1, changes the equilibrium configuration and the active constraints
remain I1 and I3, then the total variation of the flux after the interaction is
given by

Tot.Var.+f = |γ̂2 − γ2,0|+ |γ̂4 − γ4,0| ,
where γi,0 and γ̂i (i ∈ {1, 2, 3, 4}) are the fluxes of the equilibrium respectively
before and after the interaction. Since the active constraints before and after
the interaction remain I1 and I3, we have that

α3,1γ1,0 + α3,2γ2,0 = α3,1γ̂1 + α3,2γ̂2

and so
γ2,0 − γ̂2 =

α3,1

α3,2
(γ̂1 − γ1,0).

Moreover

γ4,0 = (1− α3,1)γ1,0 + (1− α3,2)γ2,0, γ̂4 = (1− α3,1)γ̂1 + (1− α3,2)γ̂2,

which implies

γ4,0 − γ̂4 = (1− α3,1)(γ1,0 − γ̂1) + (1− α3,2)(γ2,0 − γ̂2).

Thus

Tot.Var.+f =
α3,1 + |α3,2 − α3,1|

α3,2
Tot.Var.−f .

The conclusion follows from the fact that the coefficient

α3,1 + |α3,2 − α3,1|
α3,2

=

{
1, if α3,2 ≥ α3,1,
2α3,1−α3,2

α3,2
> 1, if α3,2 < α3,1.
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Lemma 6 Let J be a junction with at most two incoming roads and two out-
going ones and assume (A2). Suppose that a ρ-wave approaches the junction J .
If the total variation of the ρ-wave is sufficiently small, then there exists C > 0
such that the variation of the traffic-type functions in outgoing roads is bounded
by C times the flux variation of the interacting wave, i.e.

Tot.Var.+Π ≤ CTot.Var.−f .

Proof. Fix a source s ∈ S and a destination d ∈ D. We denote by πi,0 and
π̂i (i ∈ {1, 2, 3, 4}) the values of the traffic-type functions for s and d at J ,
respectively, before and after the interaction of the ρ-wave with J .

If π1,0 = π2,0 = 0, then clearly π3,0 = π4,0 = 0 and π̂3 = π̂4 = 0 and so we
conclude.

Otherwise, since the path for each car is unique, we may assume π1,0 6= 0,
π2,0 = 0, π3,0 6= 0 and π4,0 = 0. Since the speed of the traffic-type functions is
positive, then π̂1 = π1,0 and π̂2 = 0. Moreover we have

π3,0 = π1,0
γ1,0

γ3,0
, π̂3 = π1,0

γ̂1

γ̂3
, π̂4 = 0,

where γi,0 and γ̂i denote the flux in road Ii respectively before and after the in-
teraction. Assumption (A2) implies that γ3,0 6= 0. If the ρ-wave has sufficiently
small total variation, then γ̂3 6= 0 and

|π3,0 − π̂3| = π1,0

∣∣∣∣
γ1,0γ̂3 − γ̂1γ3,0

γ̂3γ3,0

∣∣∣∣ ≤ Cγ1,0 |γ̂3 − γ3,0|+ Cγ3,0 |γ̂1 − γ1,0|

for a suitable constant C > 0. This permits to conclude using Lemma 5. 2

Remark 14 The previous lemmas are proved under the assumption that the
BV norm of the ρ-wave is such that the type of the equilibrium does not change.
This excludes some realistic situations, for example that where an outgoing road
becomes closed, due to the increment of the flow in the incoming roads.

5.3 Interaction of type T5

We consider interactions of Π-waves with junctions. Since Π-waves have always
positive speed, they can interact with the junction only from an incoming road.

Lemma 7 Let us consider a junction J and a Π-wave on an incoming road
Ii interacting with J . If A is the distributional matrix for J , whose entries
are given by (8), then the interaction of the Π-wave with J modifies only the
i-th column of A. Moreover the variation of the i-th column is bounded by the
Π-wave variation.

Proof. For each s ∈ S and d ∈ D, we denote by πs,d
i and πs,d

i,0 , respectively,
the left and the right states of the Π-wave. Moreover, for every j ∈ {3, 4}, we
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denote with α−j,i and α+
j,i, respectively, the entries of the matrix A before and

after the interaction of the Π-wave with J . By (8), it is clear that, if l 6= i, then
the entries αj,l are not modified. For l = i, we have

∣∣α+
j,i − α−j,i

∣∣ ≤
∑

s∈S,d∈D,rJ (i,s,d)=j

∣∣∣πs,d
i − πs,d

i,0

∣∣∣ .

This completes the proof. 2

Remark 15 The previous lemma can be generalized to junctions with n incom-
ing roads and m outgoing ones following the same proof.

Lemma 8 Let us consider a junction J and a Π-wave on an incoming road Ii

interacting with J . If the total variation of the Π-wave is sufficiently small, then
there exists C > 0 such that the variation of the fluxes is bounded by C times
the Π-wave variation, i.e.

Tot.Var.+f ≤ CTot.Var.−Π .

Proof. We consider the case of two incoming and outgoing roads, the other
cases being similar. Let us consider first the case of an equilibrium of the first
type, i.e. there are exactly two roads that are active constraints for the Riemann
problem at J . If the active constraints are given by the incoming roads I1 and
I2, then the sets Ω1, Ω2, Ω3, Ω4 and Ω, defined in the proof of Theorem 1, are
given by

Ω1 = [0, f(ρ1,0)], Ω2 = [0, f(ρ2,0)], Ω3 = Ω4 = [0, f(σ)],

Ω =
{
(γ1, γ2) ∈ Ω1 × Ω2 : A(γ1, γ2)T ∈ Ω3 × Ω4

}
,

where (ρ1,0, ρ2,0, ρ3,0, ρ4,0) is the equilibrium for the density at J . Since the
Π-wave is sufficiently small, then it does not affect the set Ω. In fact, the
perturbation of the Π-wave slightly modifies the constraints given by the lines

α3,1γ1 + α3,2γ2 = f(σ) and α4,1γ1 + α4,2γ2 = f(σ).

These constraints remain non active since

α3,1f(ρ1,0) + α3,2f(ρ2,0) < f(σ) and α4,1f(ρ1,0) + α4,2f(ρ2,0) < f(σ);

see figure 5. Hence the solution for the fluxes of the new Riemann problem at
J is given by

(f(ρ1,0), f(ρ2,0), α+
3,1f(ρ1,0) + α3,2f(ρ2,0), α+

4,1f(ρ1,0) + α4,2f(ρ2,0)).

Therefore ρ-waves appear on I3 and I4 and the variation of the fluxes (and of
the density) is proportional to the variation of the matrix A.
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f(ρ1,0) γ1

f(ρ2,0)

α3,1γ1 + α3,2γ2 = f(σ)

α4,1γ1 + α4,2γ2 = f(σ)

γ2

Figure 5: the equilibrium when I1 and I2 are active constraints.

γ1

f(ρ2,0)

α3,1γ1 + α3,2γ2 = f(ρ3,0)
γ2

f(ρ1,0)

Figure 6: the equilibrium when I3 is the only active constraint.
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If the active constraints are one incoming road and one outgoing road or two
outgoing roads, then the conclusion follows in an analogous way.

Let us consider now the case of an equilibrium of the second type. If an
incoming road is the active constraint, then the equilibrium does not change for
incoming roads and the conclusion is as before. So we suppose that an outgoing
road, say I3, is the active constraint. It means that

Ω1 = Ω2 = Ω4 = [0, f(σ)], Ω3 = [0, f(ρ3,0)];

see figure 6. The change in the matrix A affects the lines in R2

α3,1γ1 + α3,2γ2 = f(ρ3,0), α4,1γ1 + α4,2γ2 = f(σ).

The new maximum point (γ̂1, γ̂2) for the function E, defined in (17), belongs to
the line

α+
3,1γ1 + α3,2γ2 = f(ρ3,0),

if the perturbation is sufficiently small. In fact, from the shape of the level
curves of E, we deduce that (γ̂1, γ̂2) is the tangent point of the previous line to
a level curve of E. In our case the function E is given by

E(γ1, γ2) =
1

1 + p2
1

(γ2 − p1γ1)2 − γ1 − γ2.

If we denote by m the angular coefficient of

α+
3,1γ1 + α3,2γ2 = f(ρ3,0),

i.e. m = −α+
3,1

α3,2
, then the solution (γ̂1, γ̂2) of the new Riemann problem for the

fluxes in the incoming roads is given by the solution of the following system:
{

γ2 − p1γ1 = 1+p2
1

2
1+m
m−p1

,

α+
3,1γ1 + α3,2γ2 = f(ρ3,0),

where the first equation is the locus of the maximum point for E when the only
active constraint is given by I3, while the second equation gives the expression
of the active constraint. This permits to conclude. 2

6 Perturbation of a solution

Let us consider an admissible network (I,F ,J ,S,D,R,P) and assume (A1),
(A2) given in the previous section. We have the following theorem.

Theorem 2 Let (ρ̄, Π̄) be an equilibrium on the whole network. For every T > 0
there exists ε > 0 such that the following holds. For every perturbation (ρ̃, Π̃)
of the equilibrium with

‖ρ̃‖BV ≤ ε,
∥∥∥Π̃

∥∥∥
BV

≤ ε, (33)
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and
‖ρ̃− ρ̄‖∞ +

∥∥∥Π̃− Π̄
∥∥∥
∞
≤ ε, (34)

there exists an admissible solution (ρ, Π) defined for every t ∈ [0, T [ such that
at time t = 0 coincides with (ρ̃, Π̃).

Proof. Let δ = minIi
(bi − ai), λ̂ = max{f ′(0),−f ′(1)} and N =

[
T λ̂
δ

]
+ 1,

where the brackets stands for the integer part. For every ν ∈ N, let ρ̂ν , Π̂ν be
two piecewise constant sequences approximating the initial conditions ρ̃(0, ·),
Π̃(0, ·) in BV-norm. We denote with ρ∗ν , Π∗ν an approximate wave-front tracking
solution on [0, T ] such that ρ∗ν(0, ·) = ρ̂ν(·) and Π∗ν(0, ·) = Π̂ν(·). For every
interaction of a wave with a junction we have the estimates of Lemmas 5, 6, 8,
if the strength of the waves are bounded by some ε̄ > 0. Taking ε = ε̄

NC we get:

Tot.Var.Π∗ν(t, ·) ≤ NCε = ε̄,

and
Tot.Var.f(ρ∗ν(t, ·)) ≤ NCε = ε̄

for every t ∈ [0, T ].
Theorem 5.10 in [8] implies that there exists ρ∗ such that ρ∗ν → ρ∗ strongly

in L1
loc, at least by extracting a subsequence. Moreover, by Helly theorem, there

exists Π∗ such that Π∗ν → Π∗ in L1
loc, at least by extracting a subsequence. We

complete the proof with standard arguments. 2
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