
Traffic Flow on a Road Network

Giuseppe Maria Coclite ∗ Mauro Garavello †

Benedetto Piccoli ‡

Abstract

This paper is concerned with a fluidodynamic model for traffic flow. More precisely, we

consider a single conservation law, deduced from the conservation of the number of cars,

defined on a road network that is a collection of roads with junctions. The evolution

problem is underdetermined at junctions, hence we choose to have some fixed rules for

the distribution of traffic plus an optimization criteria for the flux. We prove existence of

solutions to the Cauchy problem and we show that the Lipschitz continuous dependence

by initial data does not hold in general.

Our method is based on wave front tracking approach, see [6], and works also for

boundary data and time dependent coefficients of traffic distribution at junctions, so

including traffic lights.
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1 Introduction.

This paper deals with a fluidodynamic model of heavy traffic on a road network. More

precisely, we consider the conservation law formulation proposed by Lighthill and Whitham

[14] and Richards [15]. This nonlinear framework is based simply on the conservation of cars

and is described by the equation:

ρt + f(ρ)x = 0, (1.1)

where ρ = ρ(t, x) ∈ [0, ρmax], (t, x) ∈ R+×R, is the density of cars, v = v(t, x) is the velocity

and f(ρ) = v ρ is the flux. This model is appropriate to reveal shocks formation as it is

natural for conservation laws, whose solutions may develop discontinuities in finite time even

for smooth initial data (see [6]). In most cases one assumes that v is a function of ρ only and

that the corresponding flux is a concave function. We make this assumption, moreover we let

f have a unique maximum σ ∈]0, ρmax[ and for notational simplicity we assume ρmax = 1.

Here we deal with a network of roads, as in [12]. This means that we have a finite number

of roads modeled by intervals [ai, bi] (with one of the two endpoints possibly infinite) that

meet at some junctions. For endpoints that do not touch a junction (and are not infinite),

we assume to have a given boundary data and solve the corresponding boundary problem,

as in [1, 2, 3, 5]. The key role is played by junctions at which the system is underdetermined

even after prescribing the conservation of cars, that can be written as the Rankine-Hugoniot

relation:
n∑

i=1

f(ρi(t, bi)) =
n+m∑

j=n+1

f(ρj(t, aj)), (1.2)

where ρi, i = 1, . . . , n, are the car densities on incoming roads, while ρj , j = n+1, . . . , n+m,

are the car densities on outgoing roads. In [12], the Riemann problem, that is the problem

with constant initial data on each road, is solved maximizing a concave function of the fluxes

and it is proved existence of weak solutions for Cauchy problems with suitable initial data of

bounded variation. In this paper we assume that:

(A) there are some prescribed preferences of drivers, that is the traffic from incoming roads

is distributed on outgoing roads according to fixed coefficients;

(B) respecting (A), drivers choose so as to maximize fluxes.

To deal with rule (A), we fix a traffic distribution matrix

A
.= {αji}j=n+1,...n+m, i=1,...,n ∈ Rm×n,

such that

0 < αji < 1,
n+m∑

j=n+1

αji = 1, (1.3)
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for each i = 1, ..., n and j = n+ 1, ..., n+m, where αji is the percentage of drivers arriving

from the i−th incoming road that take the j−th outgoing road. Notice that with only the

rule (A) Riemann problems are still underdetermined. This choice represents a situation

in which drivers have a final destination, hence distribute on outgoing roads according to a

fixed law, but maximize the flux whenever possible. We are able to solve uniquely Riemann

problems, under suitable conditions on the matrix A. Our main technique is the use of a

front tracking algorithm and suitable approximations in order to control the total variation

of the flux. We refer the reader to [6] for the general theory of conservation laws and for a

discussion of wave front tracking algorithms.

The main difficulty in solving systems of conservation laws is the control of the total

variation, see [6]. It is easy to see that for a single conservation law the total variation is

decreasing, however in our case it may increase due to interaction of waves with junctions.

There is a natural lack of symmetry for big waves and bad data at junctions, since the

role of entering roads is different from that of exiting ones. Similarly, for scalar conservation

laws with discontinuous coefficients, one has to use a definition of strength for discontinuities

of the coefficient, seen as waves, that is not symmetric but depends on the sign of the jump

in the solution, see [13, 16, 17]. This is enough to control the total variation in that case,

on the contrary our problem is more delicate. In fact, the variation can still increase due to

interactions of waves with junctions (and there is no bound on the number of interactions).

The conserved quantity is the total variation of the flux. We prove this fact for junctions

with only two incoming roads and two outgoing ones. Unfortunately the total variation of

the flux is not equivalent to the total variation of ρ, since f ′(σ) = 0, and so it is not sufficient

to prove existence of solutions. We need also some compactness arguments and some bound

of big waves near the junctions.

Our techniques are quite flexible, so we can deal with time dependent coefficients for

the rule (A). In particular, we can model traffic lights and also in this case the control

of total variation is extremely delicate. An arbitrarily small change in the coefficients can

produce waves whose strength is bounded away from zero. Still it is possible to consider

periodic coefficients, a case of particular interest for applications. We can also deal with

roads with different fluxes: this can be treated in the same way with the necessary notational

modifications.

There is an interesting ongoing discussion on hydrodynamic modelization for heavy traffic

flow. In particular some models using systems of two conservation laws have been proposed,

see [4, 9, 11]. We do no treat this aspect.

The paper is organized as follows. In Section 2 we give the definition of weak entropic

solution and following (A) and (B) we introduce an admissibility condition. In Section 3 we
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prove the existence and uniqueness of admissible solutions for the Riemann Problem in a

junction, then using this we describe the construction of the approximants for the Cauchy

Problem (see Section 4). In Section 5 we prove the monotonicity of the total variation of the

flux and existence of admissible solutions for the Cauchy Problem with suitable BV initial

data. In Section 6 we prove with a counterexample that the Lipschitz continuous dependence

with respect to initial data does not hold, but we also show that this property holds under

special assumptions. In Section 7 we describe what happens when there are traffic lights and

time dependent coefficients. Finally, in Appendix B we show that the interaction of a small

wave with a junction can produce a uniformly big wave.

2 Basic Definitions.

We consider a network of roads, that is modeled by a finite collection of intervals Ii = [ai, bi] ⊂
R, i = 1, . . . , N , ai < bi, possibly with either ai = −∞ or bi = +∞, on which we consider

the equation (1.1). Hence the datum is given by a finite collection of functions ρi defined on

[0,+∞[×Ii.
On each road Ii we want ρi to be a weak entropic solution, that is for every function

ϕ : [0,+∞[×Ii → R smooth with compact support on ]0,+∞[×]ai, bi[∫ +∞

0

∫ bi

ai

(
ρi
∂ϕ

∂t
+ f(ρi)

∂ϕ

∂x

)
dxdt = 0, (2.4)

and for every k ∈ R and every ϕ̃ : [0,+∞[×Ii → R smooth, positive with compact support

on ]0,+∞[×]ai, bi[∫ +∞

0

∫ bi

ai

(
|ρi − k|∂ϕ̃

∂t
+ sgn (ρi − k)(f(ρi)− f(k))

∂ϕ̃

∂x

)
dxdt ≥ 0. (2.5)

It is well known that, for equation (1.1) on R and for every initial data in L∞, there exists

a unique weak entropic solution depending in a continuous way from the initial data in L1
loc.

We assume that the roads are connected by some junctions. Each junction J is given by

a finite number of incoming roads and a finite number of outgoing roads, thus we identify

J with ((i1, . . . , in), (j1, . . . , jm)) where the first n–tuple indicates the set of incoming roads

and the second m–tuple indicates the set of outgoing roads. We assume that each road can

be incoming road at most for one junction and outgoing at most for one junction.

Hence the complete model is given by a couple (I,J ), where I = {Ii : i = 1, . . . , N} is

the collection of roads and J is the collection of junctions.

Fix a junction J with incoming roads, say I1, . . . , In, and outgoing roads, say In+1, . . . , In+m.

A weak solution at J is a collection of functions ρl : [0,+∞[×Il → R, l = 1, . . . , n+m, such
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that
n+m∑
l=0

(∫ +∞

0

∫ bl

al

(
ρl
∂ϕl

∂t
+ f(ρl)

∂ϕl

∂x

)
dxdt

)
= 0, (2.6)

for every ϕl, l = 1, . . . , n + m smooth having compact support in ]0,+∞[×]al, bl] for l =

1, . . . , n (incoming roads) and in ]0,+∞[×[al, bl[ for l = n + 1, . . . , n +m (outgoing roads),

that are also smooth across the junction, i.e.

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, ..., n, j = n+ 1, ..., n+m.

Remark 2.1 Let ρ = (ρ1, . . . , ρn+m) be a weak solution at the junction such that each

x → ρi(t, x) has bounded variation. We can deduce that ρ satisfies the Rankine-Hugoniot

Condition at the junction J , namely

n∑
i=1

f(ρi(t, bi−)) =
n+m∑

j=n+1

f(ρj(t, aj+)), (2.7)

for almost every t > 0.

The rules (A) and (B) can be given explicitly only for solutions with bounded variation

as in the next definition.

Definition 2.1 Let ρ = (ρ1, . . . , ρn+m) be such that ρi(t, ·) is of bounded variation for every

t ≥ 0. Then ρ is an admissible weak solution of (1.1) related to the matrix A, satisfying

(1.3), at the junction J if and only if the following properties hold:

(i) ρ is a weak solution at the junction J ;

(ii) f(ρj(·, aj+)) =
n∑

i=1

αjif(ρi(·, bi−)), for each j = n+ 1, ..., n+m;

(iii)
n∑

i=1

f(ρi(·, bi−)) is maximum subject to (ii).

For every road Ii = [ai, bi], if ai > −∞ and Ii is not the outgoing road of any junction,

or bi < +∞ and Ii is not the incoming road of any junction, then a boundary data ψi :

[0,+∞[→ R is given. In this case we ask ρi to satisfy ρi(t, ai) = ψi(t) (or ρi(t, bi) = ψi(t)) in

the sense of [5]. The treatment of boundary data in the sense of [5] can be done in the same

way as in [1, 2, 3], thus we treat the case without boundary data. All the stated results hold

also for the case with boundary data with obvious modifications.

Our aim is to solve the Cauchy problem on [0,+∞[ for a given initial and boundary data

as in next definition.
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Definition 2.2 Given ρ̄i : Ii → R, i = 1, . . . , N , L∞ functions, a collection of functions

ρ = (ρ1, . . . , ρN ), with ρi : [0,+∞[×Ii → R continuous as functions from [0,+∞[ into L1
loc,

is an admissible solution if ρi is a weak entropic solution to (1.1) on Ii, ρi(0, x) = ρ̄i(x) a.e.,

and if at each junction ρ is a weak solution and is an admissible weak solution in case of

bounded variation.

On the flux f we make the following assumption

(F) f : [0, 1] → R is smooth, strictly concave (i.e. f ′′ ≤ −c < 0 for some c > 0), f(0) =

f(1) = 0. Therefore there exists a unique σ ∈]0, 1[ such that f ′(σ) = 0 (that is σ is a

strict maximum).

3 The Riemann Problem.

In this section we study Riemann problems. For a scalar conservation law a Riemann problem

is a Cauchy problem for an initial data of Heaviside type, that is piecewise constant with only

one discontinuity. One looks for centered solutions, i.e. ρ(t, x) = φ(x
t ), which are the building

blocks to construct solutions to the Cauchy problem via wave front tracking algorithm. These

solutions are formed by continuous waves called rarefactions and by traveling discontinuities

called shocks. The speed of waves are related to the values of f ′, see [6].

Analogously, we call Riemann problem for the road network the Cauchy problem corre-

sponding to an initial data that is piecewise constant on each road. The solutions on each

road Ii can be constructed in the same way as for the scalar conservation law, hence it suffices

to describe the solution at junctions. Because of finite propagation speed, it is enough to

study the Riemann Problem for a single junction.

Consider a junction J in which there are n roads with incoming traffic and m roads with

outgoing traffic, and a traffic distribution matrix A. For simplicity we indicate by

(t, x) ∈ R+ × Ii 7→ ρi(t, x) ∈ [0, 1], i = 1, ..., n, (3.8)

the densities of the cars on the roads with incoming traffic and

(t, x) ∈ R+ × Ij 7→ ρj(t, x) ∈ [0, 1], j = n+ 1, ..., n+m (3.9)

those on the roads with outgoing traffic, sse Figure 1.

We need some more notation:

Definition 3.1 Let τ : [0, 1] → [0, 1] be the map such that:

1. f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];
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1

2

3 n

n+1

n+2

n+m

Figure 1: a junction.

2. τ(ρ) 6= ρ for every ρ ∈ [0, 1] \ {σ}.

Clearly, τ is well defined and satisfies

0 ≤ ρ ≤ σ ⇐⇒ σ ≤ τ(ρ) ≤ 1, σ ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τ(ρ) ≤ σ.

To state the main result of this section we need some assumption on the matrix A sat-

isfied under generic conditions. Let {e1, . . . , en} be the canonical basis of Rn and for every

subset V ⊂ Rn indicate by V ⊥ its orthogonal. Define for every i = 1, . . . , n, Hi = e⊥i ,

i.e. the coordinate hyperplane orthogonal to ei and for every j = n + 1, . . . , n + m let

αj = (αj1, . . . , αjn) ∈ Rn and define Hj = α⊥j . Let K be the set of indices k = (k1, ..., k`),

1 ≤ ` ≤ n− 1, such that 0 ≤ k1 < k2 < · · · < k` ≤ n+m and for every k ∈ K set

Hk =
⋂̀
h=1

Hh.

Letting 1 = (1, . . . , 1) ∈ Rn, we assume

(C) for every k ∈ K, 1 /∈ H⊥
k .

Remark 3.1 Condition (C) is a technical condition, which allows us to have uniqueness

to the maximization problem described in Theorem 3.1. From (C) we immediately derive

m ≥ n. Otherwise, since by definition 1 =
∑n+m

j=n+1 αj , we get 1 ∈ H⊥
k , where

Hk = ∩n+m
j=n+1Hj ,

and it is clearly a contradiction. Moreover if n ≥ 2, then (C) implies that, for every j ∈
{n + 1, . . . , n + m} and for every distinct elements i, i′ ∈ {1, . . . , n}, it holds αji 6= αji′ .

Otherwise, without loss of generalities, we may suppose that αn+1,1 = αn+1,2. If we consider

Hk = (∩2<j≤nHj) ∩Hn+1,
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then, by (C), there exists an element (x1, x2, 0, . . . , 0) ∈ H such that x1 + x2 6= 0 and

αn+1,1(x1, x2) = 0.

In the case of a simple junction J with 2 incoming roads and 2 outgoing ones, the condition

(C) is completely equivalent to the fact that, for every j ∈ {3, 4}, αj1 6= αj2.

Remark 3.2 Notice that the matrix A could have identical lines. For example the matrix

A =


1
3

1
4

1
5

1
3

1
4

1
5

1
3

1
2

3
5


satisfies the condition (C).

Theorem 3.1 Consider a junction J , assume that the flux f : [0, 1] → R satisfies (F) and

the matrix A satisfies condition (C). For every ρ1,0, ..., ρn+m,0 ∈ [0, 1], there exists a unique

admissible centered weak solution, in the sense of Definition 2.1, ρ =
(
ρ1, ..., ρn+m

)
of (1.1)

at the junction J such that

ρ1(0, ·) ≡ ρ1,0, ......, ρn+m(0, ·) ≡ ρn+m,0.

Moreover, there exists a unique (n+m)−tuple (ρ̂1, ..., ρ̂n+m) ∈ [0, 1]n+m such that

ρ̂i ∈

{
{ρi,0}∪]τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,

[σ, 1], if σ ≤ ρi,0 ≤ 1,
i = 1, ..., n, (3.10)

and

ρ̂j ∈

{
[0, σ], if 0 ≤ ρj,0 ≤ σ,

{ρj,0} ∪ [0, τ(ρj,0)[, if σ ≤ ρj,0 ≤ 1,
j = n+ 1, ..., n+m. (3.11)

Fixed i ∈ {1, ..., n}, if ρi,0 ≤ ρ̂i, we have

ρi(t, x) =

{
ρi,0, if x < f(ρ̂i)−f(ρi,0)

ρ̂i−ρi,0
t+ bi, t ≥ 0,

ρ̂i, if x > f(ρ̂i)−f(ρi,0)
ρ̂i−ρi,0

t+ bi, t ≥ 0,
(3.12)

and, if ρ̂i < ρi,0,

ρi(t, x) =


ρi,0, if x ≤ f ′(ρi,0)t+ bi, t ≥ 0,(
f ′
)−1((x− bi)/t

)
, if f ′(ρi,0)t+ bi ≤ x ≤ f ′(ρ̂i)t+ bi, t ≥ 0,

ρ̂i, if x > f ′(ρ̂i)t+ bi, t ≥ 0.

(3.13)

Fixed j ∈ {n+ 1, ..., n+m}, if ρj,0 ≤ ρ̂j, we have

ρj(t, x) =


ρ̂j , if x ≤ f ′(ρ̂j)t+ aj , t ≥ 0,(
f ′
)−1((x− aj)/t

)
, if f ′(ρ̂j)t+ aj ≤ x ≤ f ′(ρj,0)t+ aj , t ≥ 0,

ρj,0, if x > f ′(ρj,0)t+ aj , t ≥ 0,

(3.14)
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and, if ρ̂j < ρj,0,

ρj(t, x) =

{
ρ̂j , if x < f(ρj,0)−f(ρ̂j)

ρj,0−ρ̂j
t+ aj , t ≥ 0,

ρj,0, if x > f(ρj,0)−f(ρ̂j)
ρj,0−ρ̂j

t+ aj , t ≥ 0.
(3.15)

Proof. Define the map

E : (γ1, ..., γn) ∈ Rn 7−→
n∑

i=1

γi

and the sets

Ωi
.=

{
[0, f(ρi,0)], if 0 ≤ ρi,0 ≤ σ,

[0, f(σ)], if σ ≤ ρi,0 ≤ 1,
i = 1, ..., n,

Ωj
.=

{
[0, f(σ)], if 0 ≤ ρj,0 ≤ σ,

[0, f(ρj,0)], if σ ≤ ρj,0 ≤ 1,
j = n+ 1, ..., n+m,

Ω .=
{

(γ1, ..., γn) ∈ Ω1 × . . .× Ωn

∣∣A · (γ1, ..., γn)T ∈ Ωn+1 × . . .× Ωn+m

}
.

The set Ω is closed, convex and not empty. Moreover, by (C), ∇E is not orthogonal to any

nontrivial subspace contained in a supporting hyperplane of Ω, hence there exists a unique

vector (γ̂1, ..., γ̂n) ∈ Ω such that

E(γ̂1, ..., γ̂n) = max
(γ1,...,γn)∈Ω

E(γ1, ..., γn).

For every i ∈ {1, ..., n}, we choose ρ̂i ∈ [0, 1] such that

f(ρ̂i) = γ̂i, ρ̂i ∈

{
{ρi,0}∪]τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,

[σ, 1], if σ ≤ ρi,0 ≤ 1.

By (F), ρ̂i exists and is unique. Let

γ̂j
.=

n∑
i=1

αjiγ̂i, j = n+ 1, ..., n+m,

and ρ̂j ∈ [0, 1] be such that

f(ρ̂j) = γ̂j , ρ̂j ∈

{
[0, σ], if 0 ≤ ρj,0 ≤ σ,

{ρj,0} ∪ [0, τ(ρj,0)[, if σ ≤ ρj,0 ≤ 1.

Since (γ̂1, ..., γ̂n) ∈ Ω, ρ̂j exists and is unique for every j ∈ {n + 1, . . . , n +m}. Solving the

Riemann Problem (see [6, Chapter 6]) on each road, the thesis is proved. 2
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4 The Wave Front Tracking Algorithm.

Once the solution to a Riemann problem is provided, we are able to construct piecewise

constant approximations via wave-front tracking algorithm. The construction is very similar

to that for scalar conservation law, see [6], hence we briefly describe it.

Let ρ̄ = (ρ1, . . . , ρN ) be a piecewise constant map defined on the road network. We want

to construct a weak solution of (1.1) with initial condition ρ(0, ·) ≡ ρ̄. We begin by solving

the Riemann Problems on each road in correspondence of the jumps of ρ̄ and the Riemann

Problems at junctions determined by the values of ρ̄ (see Theorem 3.1). We split each

rarefaction wave into a rarefaction fan formed by rarefaction shocks, that are discontinuities

traveling with the Rankine-Hugoniot speed. We always split rarefaction waves inserting the

value σ (if it is in the range of the rarefaction). Moreover, we let any rarefaction shock with

endpoint σ have velocity zero.

When a wave interacts with another one we simply solve the new Riemann Problem.

Instead, when a wave reaches a junction, we solve the Riemann Problem at the junction.

The number of waves may increase only for interactions of waves at junctions. Since the

speeds of waves are bounded, there are finitely many waves on the network at each time

t ≥ 0. We call the obtained function a wave front tracking approximate solution. Given a

general initial data, we approximate it by a sequence of piecewise constant functions and

construct the corresponding approximate solutions. If they converge in L1
loc, then the limit

is a weak entropic solution on each road, see [6] for a proof.

5 Estimates on Flux Variation and Existence of Solu-

tions.

This Section is devoted to the estimation of the total variation of the flux along a solution.

From now on, we assume that every junction has exactly two incoming roads and two outgoing

ones. The case where junctions have at most two incoming roads and at most two outgoing

roads can be treated in the same way. So, for each junction J , the matrix A, defined in the

introduction, takes the form

A =

(
α β

1− α 1− β

)
, (5.16)

where α, β ∈]0, 1[ and α 6= β, so that (C) is satisfied.

From now on we fix an approximate wave front tracking solution ρ, defined on the road

network.
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Definition 5.1 For every road Ii, i = 1, . . . , N , we indicate by

(ρθ
−, ρ

θ
+), θ ∈ Θ = Θ(ρ, t, i), Θ finite set,

the discontinuities on road Ii at time t, and by xθ(t), λθ(t), θ ∈ Θ, respectively their positions

and velocities at time t. We also refer to the wave θ to indicate the discontinuity (ρθ
−, ρ

θ
+).

For each discontinuity (ρθ
−, ρ

θ
+) at time t̄ on road Ii, we call yθ(t), t ∈ [t̄, tθ], the trace of

the wave so defined. We start with yθ(t̄) = xθ(t̄) and we continue up to the first interaction

with another wave or a junction. If at time t̃ an interaction with a wave or a junction occurs,

then either a single new wave (ρθ̃
−, ρ

θ̃
+) on road Ii is produced or no wave is produced. In the

latter case we set tθ = t̃, otherwise we set yθ(t̃) = xθ̃(t̃) and follow xθ̃(t) for t ≥ tθ̃ up to next

interaction and so on.

We start by proving some technical lemmata.

Lemma 5.1 Fix a junction J and an incoming road Ii. Let θ be a wave on road Ii, produced

at time t̄ at J with a flux decrease, i.e. xθ(t̄) = bi, λθ(t̄) < 0 and f(ρθ
+) < f(ρθ

−). Let yθ be

the traced wave and assume that there exists t̃, the first time of interaction of yθ with J after

t̄. Then either yθ interacts with another junction on ]t̄, t̃[ or, letting θ1, . . . , θl be the waves

interacting with yθ at times tm ∈]t̄, t̃[, m = 1, . . . , l, (t1 < t2 < . . . < tl), we have:∣∣f(ρ(t̃− ε, yθ(t̃− ε)+))− f(ρ(t̃− ε, yθ(t̃− ε)−))
∣∣

≤
l∑

m=1

∣∣f(ρ(tm − ε, xθm(tm − ε)+))− f(ρ(tm − ε, xθm(tm − ε)−))
∣∣− ∣∣f(ρθ

−)− f(ρθ
+)
∣∣ ,

for ε > 0 small enough. This means that the initial flux variation along yθ is canceled. The

same conclusion holds for an outcoming road Ij.

Proof. Consider the wave (ρθ
−, ρ

θ
+) as in the statement, then it is a shock with negative

velocity and ρθ
+ > max{ρθ

−, τ(ρ
θ
−)}. If yθ interacts with another junction, then there is

nothing to prove. So, we assume that yθ does not interact with another junction. At time

t1, the wave θ1 interacts with yθ. We analyze first the case of interaction from the left of yθ.

We have two possibilities:

1. ρθ1
− ∈ [0, τ(ρθ

+)]. In this case we have total cancellation of the flux variation and so∣∣∣f(ρθ
+)− f(ρθ1

− )
∣∣∣ = ∣∣∣f(ρθ1

− )− f(ρθ
−)
∣∣∣− ∣∣f(ρθ

−)− f(ρθ
+)
∣∣ .

Therefore the thesis easily follows.
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2. ρθ1
− ∈]τ(ρθ

+), ρθ
+]. In this case the wave yθ after the time interaction t1 has the same

nature of yθ before t1, i.e.

max{ρ(t1+, yθ(t1+)−), τ(ρ(t1+, yθ(t1+)−))} < ρ(t1+, yθ(t1+)+).

We consider now the case of interaction from the right of yθ. It is clear that ρθ1
+ ∈]ρθ

−, 1].

If moreover f(ρθ1
+ ) ≥ f(ρθ

−), then we have total cancellation of the flux and we conclude as

before. If instead f(ρθ1
+ ) < f(ρθ

−), then the wave yθ after the time t1 has the same nature of

yθ before t1.

We repeat this argument at each interaction time tm. If at some tm we have total

cancellation of the flux, then we conclude. Therefore we may suppose that at each tm total

cancellation of the flux does not occur. Since the nature of the wave yθ does not change, we

have

max{ρ(t̃−, yθ(t̃−)−), τ(ρ(t̃−, yθ(t̃−)−))} < ρ(t̃−, yθ(t̃−)+),

and hence the speed λθ(t̃−) is negative, which contradicts the fact that yθ interacts with J

at time t̃. 2

Lemma 5.2 Fix a junction J and an incoming road Ii. Let θ be a wave on road Ii, produced

at time t̄ at J by a flux increase, i.e. xθ(t̄) = bi, λθ(t̄) < 0 and f(ρθ
+) > f(ρθ

−). Let yθ be

the traced wave and assume that there exists t̃, the first time of interaction of yθ with J after

t̄ and that yθ does not interact with other junctions in ]t̄, t̃[. If yθ does not cancel the flux

variation, then it produces a flux decrease at J at t̃, i.e.

f(ρ(t̃− ε, yθ(t̃− ε)−)) < f(ρ(t̃− ε, yθ(t̃− ε)+)),

for ε > 0 small enough. The same holds for outgoing roads.

Proof. Since λθ(t̄) < 0 and f(ρθ
+) > f(ρθ

−), then ρθ
− > σ. Moreover the wave (ρθ

−, ρ
θ
+) is a

rarefaction fan, hence σ < ρθ
+ < ρθ

−.

If an interaction on the right with a wave θ1 happens, then ρθ1
+ ∈]ρθ

−, 1] and we have total

cancellation of the flux variation. Therefore we may suppose that an interaction on the left

with a wave θ1 happens. In this case we have two possibilities:

1. ρθ1
− ∈ [0, τ(ρθ

+)[;

2. ρθ1
− ∈ [τ(ρθ

+), ρθ
+[.

In the latter case we have total cancellation of the flux variation and so we conclude. In the

first case, instead, the type of the wave changes, since

0 < ρθ1
− < τ(ρθ

+) ≤ σ ≤ ρθ
+ < 1.
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The speed of the wave yθ after this interaction is positive and if there are no more interaction,

then we have the thesis since f(ρθ1
− ) < f(ρθ

+). Thus we suppose that an interaction with a

wave θ2 happens. If it is an interaction from the left, then the possibilities are the followings:

1. ρθ2
− ∈ [0, τ(ρθ

+)[. We do not have total cancellation of the flux variation, but the type

of the wave does not change and the situation is identical to the previous one.

2. ρθ2
− ∈ [τ(ρθ

+), σ[. We have total cancellation of the flux variation and so we conclude.

If it is an interaction from the right, then the possibilities are the followings:

1. ρθ2
+ ∈ [σ, τ(ρθ1

− )[. We do not have total cancellation of the flux variation, but the type

of the wave does not change.

2. ρθ2
+ ∈ [τ(ρθ1

− ), 1]. We have total cancellation of the flux variation and so we conclude.

The conclusion now easily follows repeating this argument. If at each interaction we do

not have total cancellation of the flux variation, then we necessary have that

f(ρ(t̃− ε, yθ(t̃− ε)−)) < f(ρ(t̃− ε, yθ(t̃− ε)+)),

for ε > 0 small enough, which concludes the proof. 2

Lemma 5.3 Fix a junction J . If a wave interacts with the junction J from an incoming

road at time t̄, then

Tot.Var.
(
f(ρ(t̄+, ·))

)
= Tot.Var.

(
f(ρ(t̄−, ·))

)
. (5.17)

Proof. For simplicity let us assume that I1, I2 are the incoming roads and I3, I4 are the

outgoing ones. Let (ρ1,0, ..., ρ4,0) be an equilibrium configuration at the junction J . We

assume that the wave is coming from the first road and that it is given by the values (ρ1, ρ1,0).

Let us define the incoming flux

f in(y) .=

{
f(y), if 0 ≤ y ≤ σ,

f(σ), if σ ≤ y ≤ 1,
(5.18)

and the outgoing flux

fout(y) .=

{
f(σ), if 0 ≤ y ≤ σ,

f(y), if σ ≤ y ≤ 1.
(5.19)

Clearly, since the wave on the first road has positive velocity, we have

0 ≤ ρ1 < σ. (5.20)
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Let (ρ̂1, ..., ρ̂4) be the solution of the Riemann Problem in the junction J with initial data

(ρ1, ρ2,0, ρ3,0, ρ4,0) (see Theorem 3.1). By definition,
(
f(ρ1,0), f(ρ2,0)

)
is the maximum point

of the map E on the domain

Ω0
.=
{

(γ1, γ2) ∈ Ω1,0 × Ω2,0

∣∣A · (γ1, γ2)T ∈ Ω3,0 × Ω4,0

}
,

and
(
f(ρ̂1), f(ρ̂2)

)
is the maximum point of the map E on the domain

Ω̂ .=
{

(γ1, γ2) ∈ Ω1 × Ω2,0

∣∣A · (γ1, γ2)T ∈ Ω3,0 × Ω4,0

}
,

where

Ωj,0
.=

{
[0, f in(ρj,0)], if j = 1, 2,

[0, fout(ρj,0)], if j = 3, 4,

and, by (5.20),

Ω1
.= [0, f in(ρ1)] = [0, f(ρ1)].

It is also clear that (
f(ρ1,0), f(ρ2,0)

)
∈ ∂Ω0,

(
f(ρ̂1), f(ρ̂2)

)
∈ ∂Ω̂.

For simplicity we use the notation (5.16).

We distinguish two cases. First we suppose that

f(ρ1) < f(ρ1,0), (5.21)

(equality can not happen in the previous equation because the wave would have velocity

zero). Then Ω̂ ⊂ Ω0 and

f(ρ̂1) ≤ f(ρ1), f(ρ̂1) + f(ρ̂2) ≤ f(ρ1,0) + f(ρ2,0). (5.22)

We claim that

f(ρ2,0) ≤ f(ρ̂2), f(ρ̂3) ≤ f(ρ3,0), f(ρ̂4) ≤ f(ρ4,0). (5.23)

The points
(
f(ρ1,0), f(ρ2,0)

)
,
(
f(ρ̂1), f(ρ̂2)

)
are on the boundaries of Ω0, Ω̂ respectively,

where the function E attains the maximum, hence each one is at least on one of the curves

αγ1 + βγ2 = fout(ρ3,0), (1− α)γ1 + (1− β)γ2 = fout(ρ4,0), γ2 = f in(ρ2,0).

Let us assume that the two points are on the same curve, the other cases being similar,

αγ1 + βγ2 = fout(ρ3,0). (5.24)

Observe that the map E is increasing on the curve

γ1 7→
(
γ1,

fout(ρ3,0)
β

− α

β
γ1

)
,
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otherwise we contradict the maximality of E at
(
f(ρ1,0), f(ρ2,0)

)
. Thus α < β, ρ̂1 = ρ1, the

first two inequalities in (5.23) hold and

f(ρ̂1) = f(ρ1), f(ρ̂2) > f(ρ2,0), f(ρ̂3) = f(ρ3,0) = fout(ρ3,0). (5.25)

On the other hand, by (5.22), we have

f(ρ̂4) = (1− α)f(ρ̂1) + (1− β)f(ρ̂2) ≤
≤ (1− α)

(
f(ρ1,0) + f(ρ2,0)− f(ρ̂2)

)
+ (1− β)f(ρ̂2) =

= (1− α)
(
f(ρ1,0) + f(ρ2,0)

)
+
(
α− β

)
f(ρ̂2) ≤

≤ (1− α)
(
f(ρ1,0) + f(ρ2,0)

)
+
(
α− β

)
f(ρ2,0) = f(ρ4,0).

Thus (5.23) holds. Using the Rankine–Hugoniot Condition (2.7) at the junction J , and using

(5.23), and (5.25), we get

Tot.Var.
(
f(ρ(t̄+, ·))

)
=

= |f(ρ̂1)− f(ρ1)|+ |f(ρ̂2)− f(ρ2,0)|+ |f(ρ̂3)− f(ρ3,0)|+ |f(ρ̂4)− f(ρ4,0)| =
=
(
f(ρ̂2)− f(ρ2,0)

)
+
(
f(ρ3,0)− f(ρ̂3)

)
+
(
f(ρ4,0)− f(ρ̂4)

)
=

= f(ρ1,0)− f(ρ̂1) = f(ρ1,0)− f(ρ1) = Tot.Var.
(
f(ρ(t̄−, ·))

)
.

Suppose now that

f(ρ1,0) < f(ρ1),

then ρ1,0 < ρ1 < σ and Ω0 ⊂ Ω̂. Assuming again that both points of maximum of the

function E are on the curve (5.24), we have

f(ρ̂1) = f(ρ1), f(ρ̂2) ≤ f(ρ2,0), f(ρ3,0) = f(ρ̂3), f(ρ4,0) ≤ f(ρ̂4).

By the Rankine Hugoniot Condition at the junction J (see (2.7)), we have

Tot.Var.
(
f(ρ(t̄+, ·))

)
=

= |f(ρ̂1)− f(ρ1)|+ |f(ρ̂2)− f(ρ2,0)|+ |f(ρ̂3)− f(ρ3,0)|+ |f(ρ̂4)− f(ρ4,0)| =
=
(
f(ρ2,0)− f(ρ̂2)

)
+
(
f(ρ̂3)− f(ρ3,0)

)
+
(
f(ρ̂4)− f(ρ4,0))

)
=

= f(ρ̂1)− f(ρ1,0) = f(ρ1)− f(ρ1,0) = Tot.Var.
(
f(ρ(t̄−, ·))

)
.

This concludes the proof. 2

Lemma 5.4 Consider a network (I,J ). We have

Tot.Var.
(
f(ρ(0+, ·))

)
≤ Tot.Var.

(
f(ρ(0, ·))

)
+ 2Rf(σ),

where R is the total number of roads of the network.
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Proof. At time t = 0 we can have an instantaneous increase of the total variation of the flux

due to the waves generated by the Riemann problems in the junctions. Clearly, this increase

can be estimated by the maximum number of waves generated in the junctions (≤ 2R) times

the maximum variation of the flux on each road (≤ f(σ)). 2

We are now ready to prove the following.

Lemma 5.5 Consider a road network (I,J ). For some K > 0, we have

Tot.Var.
(
f(ρ(t+, ·))

)
≤ eKtTot.Var.

(
f(ρ(0+, ·))

)
≤

≤ eKt
(
Tot.Var.

(
f(ρ(0, ·))

)
+ 2Rf(σ)

)
,

for each t ≥ 0.

Proof. Fix a junction J . Notice that there exists a constant CJ , depending on the coeffi-

cients of the matrix A at J , so that each interaction of a wave with J provokes an increase

of flux variation at most by a factor CJ . More precisely, if Tot.Var.±f is the flux variation of

waves before and after the interaction then Tot.Var.+f ≤ CJTot.Var.−f .

Consider a wave θ interacting with the junction J , then from Lemma 5.3 the flux variation

can increase only if the wave is coming from an outgoing road. Let θ1, . . . , θ4 be the waves

so produced. Thanks to Lemma 5.1 waves produced by a flux decrease can not interact with

the junction J without canceling the flux variation or reaching another junction. Moreover,

by Lemma 5.2, every θi can come back to the junction J (without interacting with other

junctions) only with a decrease of the flux. Now notice that a wave with decreasing flux

interacting with J always produces a flux decrease on outgoing roads. Hence, waves θi may

come back to the junction only with decreasing flux, thus, by Lemma 5.1, producing other

waves that can not come back to the junction, unless they cancel their flux variation or

interact with other junctions. Finally, each wave flux variation can be magnified just twice

by a factor CJ interacting only with junction J and not with other junctions.

Now let δ be the minimum length of a road, i.e. δ = mini∈I(bi − ai), and λ̂ be the

maximum speed of a wave, i.e. λ̂ = max{f ′(0), |f ′(1)|}. Then each wave takes at least time

δ/λ̂ to go from one junction to another.

Finally, recalling that the total variation of the flux may only decrease for interactions on

roads, we get that a magnification of flux variation of a factor CJ = maxJ∈J C
2
J may occur

only once on each time interval of length δ/λ̂. We thus get:

Tot.Var.
(
f(ρ(t+, ·))

)
≤ C

tλ̂
δ

J Tot.Var.
(
f(ρ(0+, ·))

)
=

= eKtTot.Var.
(
f(ρ(0+, ·))

)
,

where K = λ̂ log(CJ )/δ. 2
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Definition 5.2 Consider a road network (I,J ) and an approximate wave front tracking

solution ρ. For every road Ii, we define two curves Y i,ρ
− (t), Y i,ρ

+ (t), called Boundary of

Extremal Flux, briefly BEF, in the following way. We set the initial condition Y i,ρ
− (0) = ai,

Y i,ρ
+ (0) = bi (if ai = −∞, then Y i,ρ

− ≡ −∞ and if bi = +∞, then Y i,ρ
+ ≡ +∞). We

let Y i,ρ
± (t) follow the generalized characteristic as defined in [10], as long as they lie inside

]ai, bi[, otherwise we set Y i,ρ
− (t) = ai, Y

i,ρ
+ (t) = bi. Finally, let t̄ be the first time t̄ such that

Y i,ρ
− (t̄) = Y i,ρ

+ (t̄) (possibly t̄ = +∞), then we let Y i,ρ
± defined on [0, t̄]. We define the sets

Di
1(ρ) =

{
(t, x) : t ∈ [0, t̄) : Y i,ρ

− (t) ≤ x ≤ Y i,ρ
+ (t)

}
,

and

Di
2(ρ) = [0,+∞)× [ai, bi] \Di

1(ρ).

Clearly Y i
±(t) bound the set on which the datum is not influenced by the other roads

through the junctions.

Definition 5.3 Fix an approximate wave front tracking solution ρ and a road Ii, i = 1, . . . , N .

A wave θ in Ii is said a big wave if

sgn(ρθ
− − σ) · sgn(ρθ

+ − σ) ≤ 0.

Definition 5.4 Fix an approximate wave front tracking solution ρ and a junction J . We

say that an incoming road Ii has a bad data at J at time t > 0 if

ρi(t, bi−) ∈ [0, σ].

We say that an outgoing road Ij has a bad data at J at time t > 0 if

ρj(t, aj+) ∈ [σ, 1].

Lemma 5.6 For every t ≥ 0, there exist at most two big waves on{
x : (t, x) ∈ Di

2(ρ)
}
⊆ [ai, bi].

Proof. A big wave can be generated at a junction J on road Ii, say from ai, only if there

is a bad data at J in ai. No other big waves can enter the road Ii from ai, unless a big wave

is absorbed by the junction J . Then we reach the conclusion. 2

Theorem 5.1 Fix a road network (I,J ). For every C > 0 and for every T > 0 there exists

an admissible solution defined on [0, T ] for every initial data ρ̄ ∈ cl{ρ : TV (ρ) ≤ C}, where

cl indicates the closure in L1.
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Proof. We fix a sequence of initial data ρ̄ν piecewise constant such that TV (ρ̄ν) ≤ C for

every ν ≥ 0 and ρ̄ν → ρ̄ in L1 as ν → +∞. For each ρ̄ν we consider an approximate wave

front tracking solution ρν such that ρν(0, x) = ρ̄ν(x).

For every road Ii, we notice that on Di
1(ρν), ρν is not influenced by other roads and so

the estimates of [6] hold. Since the curves Y i,ρν

± are Lipschitz continuous, it is clear that they

converge to a limit curve and hence the regions Di
1(ρν) converge to a limit region Di

1. Then

ρν → ρ on Di
1 with ρ admissible solution to the Cauchy problem.

On Di
2 := [0,+∞[×[ai, bi] \Di

1, we have that, up to a subsequence, ρν ⇀
∗ ρ weak∗ on L1

and, by [6, Theorem 2.4], f(ρν) → f̄ in L1 for some f̄ . By Lemma 5.6, there are at most two

big waves, hence, splitting the domain Di
2 in a finite number of pieces where we can invert

the function f , we have that ρν → f−1(f̄) in L1. Together with ρν ⇀
∗ ρ weak∗ on L1, we

conclude that ρν → ρ strongly in L1.

The other requirements of the definition of admissible solution are clearly satisfied. 2

6 Lipschitz continuous dependence: a counterexample.

In this section we assume that every junction has exactly two incoming roads and two out-

going ones. For every junctions we follow the notation (5.16). We present a counterexample

to the Lipschitz continuous dependence by initial data with respect to the L1–norm. The

continuous dependence by initial data with respect the L1–norm remains an open problem.

The counterexample is constructed using shifts of waves as in the spirit of [7], to which we

refer the reader for general theory.

We show that, for every C > 0, it is possible to choose two piecewise constant initial data,

which are exactly the same except for a shift ξ of a discontinuity, such that the L1–distance

of the two corresponding solutions increases by the multiplicative factor C. Obviously, the

L1–distance of the initial data is finite and given by |ξ∆ρ|, where ξ is the shift and ∆ρ is

the jump across the corresponding discontinuity. From now on, we consider a junction J ,

satisfying condition (C), with I1, I2 as incoming roads and I3, I4 as outgoing ones. Moreover

we suppose that the entries of the matrix A satisfy α < β.

First we need some technical lemmas. The first one is well–known; we report the proof

for reader’s convenience.

Lemma 6.1 Let us consider in a road two wave fronts with speeds λ1 and λ2 respectively.

At a certain time t̄ they interact together producing a wave front with speed λ3. If the first

wave is shifted by ξ1 and the second wave by ξ2, then the shift of the resulting wave is given
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Figure 2: Shifts of waves.

by

ξ3 =
λ3 − λ2

λ1 − λ2
ξ1 +

λ1 − λ3

λ1 − λ2
ξ2. (6.26)

Moreover we have that

∆ρ3 ξ3 = ∆ρ1 ξ1 + ∆ρ2 ξ2, (6.27)

where ∆ρi are the signed strengths of the corresponding waves.

Proof. We suppose that ρl and ρm are the left and the right values of the wave with speed

λ1 and ρm and ρr are the left and the right values of the wave with speed λ2, see Figure 2.

So ∆ρ1 = ρm − ρl, ∆ρ2 = ρr − ρm and ∆ρ3 = ρr − ρl. The two wave fronts have

respectively equation

x = λ1t+ x1,0, x = λ2t+ x2,0,

where x1,0 and x2,0 are the initial positions of the wave fronts with speed λ1 and λ2 respec-

tively. Therefore they interact at the point

(x̄, t̄) =
(
λ1
x1,0 − x2,0

λ2 − λ1
+ x1,0,

x1,0 − x2,0

λ2 − λ1

)
.

If we consider the shifts, then the two wave fronts interact at the point

(x̃, t̃) =
(
x1,0 + ξ1 + λ1

(x2,0 + ξ2)− (x1,0 + ξ1)
λ1 − λ2

,
(x2,0 + ξ2)− (x1,0 + ξ1)

λ1 − λ2

)
,

and consequently

ξ3 =
λ3 − λ2

λ1 − λ2
ξ1 +

λ1 − λ3

λ1 − λ2
ξ2.

Multiplying equation (6.26) by ∆ρ3 = ∆ρ1 + ∆ρ2, we easily deduce (6.27). 2

Lemma 6.2 Let us consider a junction J with the incoming roads I1 and I2 and the outgoing

roads I3 and I4. Let us suppose that at a certain time a wave in a road Ii (i ∈ {1, . . . , 4})
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interacts with J without producing waves in the same road Ii. If ξi is the shift of the wave

in Ii, then the shift ξj produced in a different road Ij (j ∈ {1, . . . , 4} \ {i}) satisfies:

ξj
(
ρ+

j − ρ−j
)

=
∆γj

∆γi
ξi
(
ρ+

i − ρ−i
)
, (6.28)

where ∆γl (l ∈ {i, j}) represents the variation of the flux in the road Il and ρ−l , ρ+
l (l ∈ {i, j})

are the states at J in the road Il respectively before and after the interaction.

Proof. For simplicity let us consider the case i = 1 and j = 3, the other cases being

completely similar. Applying the shift ξ1 to the wave (ρ+
1 , ρ

−
1 ), the interaction of the wave

with J is shifted in time by

−ξ1
ρ+
1 − ρ−1

f(ρ+
1 )− f(ρ−1 )

= −ξ1
ρ+
1 − ρ−1
∆γ1

.

The shift in time in I3 must be the same and so

ξ1
ρ+
1 − ρ−1
∆γ1

= ξ3
ρ+
3 − ρ−3
∆γ3

,

which concludes the lemma. 2

Remark 6.1 It is easy to understand that the coefficient of multiplication ∆γj/∆γi in the

previous lemma depends by the entries of the matrix A. For example, under the same

hypotheses of the previous lemma, if a wave in the I1 road interacts with J producing a

variation of the flux ∆γ1 and if no wave is produced in I1 and I2, then

∆γ3 = α∆γ1, ∆γ4 = (1− α)∆γ1.

Consequently in this case
∆γ3

∆γ1
= α,

∆γ4

∆γ1
= 1− α.

The other cases are similar.

The following lemma is the first step in order to show that the Lipschitz dependence by

initial data does not hold in our setting. More precisely, we show that there exists a simple

configuration of waves and of shifts, which, after interactions with J , produces an increase

of the L1-distance.

Lemma 6.3 There exists an equilibrium configuration (ρ1,0, ρ2,0, ρ3,0, ρ4,0) in J , data ρ̄2,

ρ̄3, ρ∗3 and shift ξ3,0 such that, if we start from the equilibrium configuration at J , then the

followings happen in chronological order:
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1. the initial distance in L1 is ξ3,0 |ρ3,0 − ρ∗3|;

2. the wave (ρ3,0, ρ
∗
3) in I3 with shift ξ3,0 interacts with J ;

3. waves are produced only in I2 and I4;

4. the wave on road I2 interacts with (ρ̄2, ρ2,0) producing a new wave;

5. the new wave from road I2 interacts with J ;

6. waves are produced only in I3 and I4;

7. in I4 the L1–distance after the interactions, is equal to

2
1− β

β
|ξ3,0 (ρ∗3 − ρ3,0)| ,

and the L1–distance on road I3 is equal to ξ3,0 |ρ3,0 − ρ∗3|.

Proof. Let (ρ1,0, ρ2,0, ρ3,0, ρ4,0) be an equilibrium configuration in J such that

0 < ρ1,0 < σ, 0 < ρ2,0 < σ, 0 < ρ3,0 < σ, 0 < ρ4,0 < σ.

In road I3, we consider a wave with negative speed (ρ3,0, ρ
∗
3) with shift ξ3,0. Since (ρ3,0, ρ

∗
3)

has negative speed, then ρ∗3 > τ(ρ3,0). Initially the L1–distance of the two solutions is given

by |ξ3,0(ρ3,0 − ρ∗3)|. When this wave interacts with J , new waves are produced in I2 and I4.

It is possible, since α < β. Therefore the new solution to the Riemann Problem at J is given

by

(ρ1,0, ρ̂2, ρ̂3, ρ̂4) ,

where τ(ρ2,0) < ρ̂2 < 1, 0 < ρ̂4 < ρ4,0. Moreover some shifts ξ̂2 and ξ̂4 are produced in roads

I2 and I4 respectively, where obviously ξ̂2 has the same sign of ξ3,0 while ξ̂4 has opposite

sign. By Lemma 6.2, we have{
ξ̂2(ρ̂2 − ρ2,0) = 1

β ξ3,0(ρ∗3 − ρ3,0),

ξ̂4(ρ̂4 − ρ4,0) = 1−β
β ξ3,0(ρ∗3 − ρ3,0).

Then we may suppose that the wave (ρ̄2, ρ2,0) in the road I2 with shift ξ̄2 = 0 interacts with

the wave (ρ2,0, ρ̂2) producing a wave (ρ̄2, ρ̂2) with positive speed and with shift ξ̃2. This

happens if 0 < ρ̄2 < τ(ρ̂2) and in this case:

ξ̃2(ρ̂2 − ρ̄2) = ξ̂2(ρ̂2 − ρ2,0) =
1
β
ξ3,0(ρ∗3 − ρ3,0).

Then, after the interaction of the wave (ρ̄2, ρ̂2) with J , the new solution of the Riemann

Problem at J is given by

(ρ1,0, ρ̄2, ρ̂3, ρ̄4) ,
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where 0 < ρ̂3 < τ(ρ∗3) and 0 < ρ̄4 < ρ̂4. So in the roads I3 and I4 new shifts ξ̂3 and ξ̄4 are

created, where: {
ξ̂3(ρ∗3 − ρ̂3) = βξ̃2(ρ̂2 − ρ̄2) = ξ3,0(ρ∗3 − ρ3,0),

ξ̄4(ρ̂4 − ρ̄4) = (1− β)ξ̃2(ρ̂2 − ρ̄2) = 1−β
β ξ3,0(ρ∗3 − ρ3,0).

Now, if a wave (ρ∗3, ρ̄3) with shift ξ̄3 = 0 interacts in I3 with the wave (ρ̂3, ρ
∗
3) (τ(ρ̂3) < ρ̄3 < 1),

then it remains a wave (ρ̂3, ρ̄3) with negative speed and with shift ξ̃3 such that

ξ̃3(ρ̄3 − ρ̂3) = ξ̂3(ρ∗3 − ρ̂3) = ξ3,0(ρ∗3 − ρ3,0).

If the two waves on road I4 does non interact, and this happens choosing appropriately the

position of waves, then in the road I4 the L1–distance is

2
1− β

β
|ξ3,0(ρ∗3 − ρ3,0)| ,

and so the lemma is proved. 2

Applying repeatedly Lemma 6.3, we produce a counterexample to the Lipschitz continuous

dependence by initial data as the next proposition shows.

Proposition 6.1 Let C > 0, let J be a junction and let (ρ1,0, . . . , ρ4,0) be an equilibrium

configuration as in Lemma 6.3. There exist two piecewise constant initial data satisfying

the equilibrium configuration at J such that their L1–distance is finite, but the L1–distance

between the corresponding two solutions increases by the multiplication factor C.

Proof. Let n be big enough so that(
1 + 2n

1− β

β

)
> C.

We want to define an initial data that provides the desired increase. We choose ρ∗3 and two

finite sequences (ρ̄i
2), (ρ̄i

3), i = 1, . . . , n, so that, letting ρ̂i
2, ρ̂

i
3 be the states determined as in

Lemma 6.3, we have: 
ρ∗3 ∈]τ(ρ3,0), 1],

ρ̄i
2 ∈ [0, τ(ρ̂i

2)[, i = 1, . . . , n,

ρ̄i
3 ∈]τ(ρ̂i

3), 1], i = 1, . . . , n.

It is easy to check that these sequences can be defined by induction.
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The piecewise constant initial data in I3 is given by

ρ3,0, if 0 < x < x∗,

ρ∗3, if x∗ < x < x̂1,

ρ̃1
3, if x̂1 < x < x̂2,

... . . .

ρ̄n
3 , if x̃n < x,

where the values x∗, x̂1, . . . , x̂n are to be determined in the sequel. If ξ3,0 denotes the shift

of the wave (ρ3,0, ρ
∗
3) and if no more shifts are present, then the L1–distance is given by

|ξ3,0| (ρ∗3 − ρ3,0) .

The initial data on I2 is 

ρ2,0, if x̃1 < x < 0,

ρ̂1
2, if x̃2 < x < x̃1,

... . . .

ρ̂n
2 , if x < x̃,

n

... . . . ,

where x̃1, . . . , x̃n are to be chosen appropriately.

The speed of the wave (ρ3,0, ρ
∗
3) is given by the Rankine–Hugoniot condition

f(ρ3,0)− f(ρ∗3)
ρ3,0 − ρ∗3

,

and consequently the time needed to go to the junction J is

T̄ = − (ρ3,0 − ρ∗3)x
∗

f(ρ3,0)− f(ρ∗3)
.

Clearly we adjust T̄ , choosing x∗. Applying n times Lemma 6.3 and adjusting the interaction

times by choosing appropriately x̄i, x̃i, i ∈ {1, . . . , n}, we deduce that the L1–distance at

t = T is given by (
1 + 2n

1− β

β

)
|ξ3,0(ρ∗3 − ρ3,0)| ,

which concludes the proof. 2

Remark 6.2 The process described in the proof of Proposition 6.1 cannot be infinitely

repeated, since the strength of the shifts becomes bigger and bigger as n goes to infinity.

Therefore, with this method, it is not possible to prove a blow–up of the L1–distance in finite

time.
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In some special cases the Lipschitz continuous dependence holds as we show in the next

subsections.

6.1 Network with only one junction and restricted domains.

We consider a road network with only one junction J and with I1, I2 incoming roads and I3,

I4 outgoing roads. We define

D :=
{
ρ̄ = (ρ̄1, . . . , ρ̄4) ∈ L∞(I1 × · · · × I4) ∩ L1(I1 × · · · × I4) : ρ̄j ∈ [0, σ], j = 3, 4

}
.

The following theorem holds.

Theorem 6.1 For every T > 0, there exists a Lipschitz continuous semigroup S : [0, T ] ×
D → D so that, for every ρ̄ ∈ D, ρ(t, x) = S(t, ρ̄)(x) is an admissible solution such that

ρ(0, x) = ρ̄(x).

Before proving the theorem, we consider the following lemma.

Lemma 6.4 Let T > 0 and let ρ, ρ̃ be two wave front tracking solutions connected by shifts

such that ρ(0, ·) ∈ D and ρ̃(0, ·) ∈ D. Then, for every t ∈ [0, T ], we have:

‖ρ(t, ·)− ρ̃(t, ·)‖L1 =
∑

θ∈Θ(t)

∣∣ξθ∆ρθ
∣∣ = ‖ρ(0, ·)− ρ̃(0, ·)‖L1 ,

where Θ(t) denotes the set of the jumps of ρ(t, ·) with shifts.

Proof. We note first that D is invariant with respect approximate wave front tracking

solutions. Since ρj ∈ [0, σ] for every j ∈ {3, 4}, each wave on I3 and I4 has positive speed

and so shifts on outgoing roads cannot propagate themselves on other roads. The conclusion

easily follows from Lemma 6.2 and Lemma 5.3. 2

Proof of Theorem 6.1. For every T > 0, by Theorem 5.1, a solution exists for every

initial data in D. Fixed ρ, ρ̃ ∈ D, we denote by ρν , ρ̃ν two approximate wave front tracking

solutions. As in [6, 7], to control the norm ‖ρν(t, ·)− ρ̃ν(t, ·)‖L1 , t ∈ [0, T ], it is enough to

control the lengths of the shifts. Therefore, by Lemma 6.4, we obtain

‖ρν(t, ·)− ρ̃ν(t, ·)‖L1 ≤ ‖ρν(0, ·)− ρ̃ν(0, ·)‖L1

for every t ∈ [0, T ]. Passing to the limit in the last expression, we obtain the thesis.
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6.2 Finite number of big waves and bad data.

Here we want to show a more general result about the Lipschitz continuity with respect to

initial data. We prefer to omit the proof of this result, since it can be done with the same

techniques as in the last subsection.

Let us consider a road network (I,J ).

Definition 6.1 Let us fix an approximate wave front tracking solution ρ. For every junction

J and for every incoming road Ii, there exists a function bρ(J, i, ·) defined on [0, T ] such that

bρ(J, i, t) =

{
0, if ρi(t, bi−) ∈ [σ, 1],

1, if ρi(t, bi−) ∈ [0, σ[.

Fixed T > 0, we consider a solution ρ defined on [0, T ] such that, for every t ∈ [0, T ],

ρ(t, ·) is a bounded variation function. If ρν is a sequence of approximate wave front tracking

solutions (briefly AWFTS), then we say that the sequence ρν has the property (H) if:

1. there exists M ∈ N such that the function bρν
(J, i, ·) has at most M discontinuities for

every J ∈ J , for every i ∈ {1, . . . , N} and for every ν ≥ 0;

2. there exists δ > 0 such that

|ρν(t, ai+)− σ| > δ

and

|ρν(t, bi−)− σ| > δ

for every J ∈ J , for every i ∈ {1, . . . , N}, for every ν ≥ 0 and for every t ∈ [0, T ].

The following proposition holds.

Proposition 6.2 There exists η > 0 and a Lipschitz continuous semigroup S defined on

[0, T ]×Dη
ρ , where

Dη
ρ := {ρ̄ : ∃(ρν)ν∈N sequence of AWFTS satisfying (H),

ρν(0, ·) → ρ̄(·) in L1,Tot.Var.(ρν(0, ·)− ρ(0, ·)) < η}.

7 Time Dependent Traffic.

In this section we consider a model of traffic including traffic lights and time dependent

traffic. The latter means that the choice of drivers at junctions may depend on the period

of the day, for instance during the morning the traffic flows towards some specific parts of
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the network and during the evening it may flow back. This means that the matrix A may

depend on time t.

Consider a single junction J as in Section 3 with two incoming roads I1, I2 and two

outgoing ones I3 and I4. Let α = α(t), β = β(t) be two piecewise constant functions such

that

0 < α(t) < 1, 0 < β(t) < 1, α(t) 6= β(t), (7.29)

for each t ≥ 0. Moreover let χ1 = χ1(t), χ2 = χ2(t) be piecewise constant maps such that

χ1(t) + χ2(t) = 1, χi(t) ∈ {0, 1}, i = 1, 2,

for each t ≥ 0. The two maps represent traffic lights, the value 0 corresponding to red light

and the value 1 to green light.

Definition 7.1 Consider ρ =
(
ρ1, ..., ρ4

)
with bounded variation. We say that ρ is a solution

at the junction J if it satisfies (i), (iii) of Definition 2.1 and the following property holds:

(iv) f(ρ3(t, a3+)) = α(t)χ1(t)f(ρ1(t, b1−)) + β(t)χ2(t)f(ρ2(t, b2−)) and

f(ρ4(t, a4+)) =
(
1 − α(t)

)
χ1(t)f(ρ1(t, b1+)) +

(
1 − β(t)

)
χ2(t)f(ρ2(t, b2+)) for each

t > 0.

The construction of the solution can be done as in Section 5. However, the total variation

of f(ρ) does not depend continuously on the total variation of the maps α(·), β(·). Indeed,

let us suppose that there are no traffic lights, i.e. χi ≡ 1, and let

α(t) =

{
η1 if 0 ≤ t ≤ t̄,

η2 if t̄ ≤ t ≤ T ,
β(t) =

{
η2 if 0 ≤ t ≤ t̄,

η1 if t̄ ≤ t ≤ T ,

where 0 < η2 < η1 <
1
2

and 0 < t̄ < T . Consider the initial data (ρ1,0, ρ2,0, ρ3,0, ρ4,0), where

f(ρ1,0) = f(ρ4,0) = f(σ), f(ρ2,0) = f(ρ3,0) =
η1

1− η2
f(σ),

and

σ < ρ2,0 < 1, 0 < ρ3,0 < σ.

This is an equilibrium configuration and hence the solution of the Riemann Problem for

0 ≤ t ≤ t̄. At time t = t̄ we have to solve a new Riemann Problem. Let (ρ̂1, ρ̂2, ρ̂3, ρ̂4) be

the new solution. We have:

f(ρ̂2) = f(ρ̂4) = f(σ), f(ρ̂1) = f(ρ̂3) =
η1

1− η2
f(σ).

Now, if η1 → η2, then

Tot.Var.
(
α; [0, T ]

)
−→ 0, Tot.Var.

(
β; [0, T ]

)
−→ 0,
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Figure 3: Configuration at J .

but(
f(ρ1,0), f(ρ2,0)

)
−→

(
f(σ),

η2
1− η2

f(σ)
)
,

(
f(ρ̂1), f(ρ̂2)

)
−→

(
η2

1− η2
f(σ), f(σ)

)
,

hence Tot.Var.
(
f(ρ); [0, T ]

)
is bounded away from zero.

*

A Appendix: Total Variation of the Fluxes.

In this section we show an example in which the total variation of the flux increases due

to interactions of waves with junctions.

Consider a single junction with three incoming roads and three outgoing ones, the matrix

A
.=

 1/2 1/2 1/3

1/3 1/2 1/2

1/6 0 1/6

 condition (C)?? (A.30)

and the constants ρ1, ρ1,0, ..., ρ6,0 ∈ [0, 1] such that

ρ1,0 = ρ3,0 = ρ4,0 = ρ5,0 = σ, σ < ρ2,0 < 1,

0 < ρ6,0, ρ1 < σ, f(ρ2,0) =
1
3
, f(ρ6,0) =

1
3
.

Assume that f(σ) = 1, then (ρ1,0, ..., ρ6,0) is an equilibrium configuration and ρ given by

ρ1(0, x) =

{
ρ1,0 if x1 ≤ x ≤ b1,

ρ1 if x < x1,
ρi(0, ·) ≡ ρi,0, i = 2, ..., 6,

is a solution. Moreover, the plane
1
6
γ1 +

1
6
γ3 = 1
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does not intersect the cube [0, 1]3 and the point
(
f(ρ1,0), ..., f(ρ6,0)

)
is on the intersection of

the planes
1
2
γ1 +

1
2
γ2 +

1
3
γ3 = 1,

1
3
γ1 +

1
2
γ2 +

1
2
γ3 = 1,

that is the line described by the map

γ1 7→
(
γ1, 2−

5
3
γ1, γ1

)
. (A.31)

At some time, say t̄, the wave (ρ1, ρ1,0) interacts with the junction. Let (ρ̂1, ...., ρ̂6) be

the solution of the Riemann Problem at the junction for the data (ρ1, ρ2,0, ..., ρ6,0). Since

the map E increases on the line described by (A.31), the point
(
f(ρ̂1), ...., f(ρ̂6)

)
is on the

curve (A.31) and

f(ρ̂1) = f(ρ̂3) = f(ρ1), f(ρ̂2) = 2− 5
3f(ρ1),

f(ρ̂4) = f(ρ̂5) = f(σ), f(ρ̂6) = 1
3f(ρ1).

We get

Tot.Var.
(
f(ρ(t̄−, ·))

)
= 1− f(ρ1),

while

Tot.Var.
(
f(ρ(t̄+, ·))

)
= 4
(
1− f(ρ1)

)
> Tot.Var.

(
f(ρ(t̄−, ·))

)
.

B Appendix: Total Variation of the Densities.

Consider a junction J with two incoming roads and two outgoing ones that we parame-

terize with the intervals ]−∞, b1], ]−∞, b2], [a3, +∞[, [a4, +∞[ respectively. We suppose

that 0 < β < α < 1/2, where α and β are the entries of the matrix A as in (5.16).

Define a solution ρ by

ρ1(0, x) =

{
ρ1,0 if x1 ≤ x ≤ b1,

ρ1 if x < x1,
ρ2(0, x) = ρ2,0, ρ3(0, x) = ρ3,0, ρ4(0, x) = ρ4,0,

(B.32)

where ρ1, ρ1,0, ρ2,0, ρ3,0, ρ4,0 are constants such that

σ < ρ2,0 < 1, σ < ρ3,0 < 1, 0 ≤ ρ1 < σ, ρ1,0 = ρ4,0 = σ, (B.33)

f(ρ1,0) = f(ρ4,0) = f(σ), f(ρ2,0) = f(ρ3,0) =
α

1− β
f(σ),

so (ρ1,0, ρ2,0, ρ3,0, ρ4,0) is an equilibrium configuration.
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Figure 4: Solution to the Riemann problem at J .

After some time the wave (ρ1, ρ1,0) interacts with the junction. Let (ρ̂1, ρ̂2, ρ̂3, ρ̂4) be

the solution of the Riemann Problem in the junction for the data (ρ1, ρ2,0, ρ3,0, ρ4,0), see

Figure 4. By (B.32) and (B.33),

f(ρ̂1) = f(ρ1), f(ρ̂2) =
f(σ)− (1− α)f(ρ1)

1− β
,

f(ρ̂3) =
α− β

1− β
f(ρ1) +

β

1− β
f(σ), f(ρ̂4) = f(σ),

and

0 < ρ̂3 < σ ≤ ρ̂2 < 1. (B.34)

Therefore, if ρ1 → ρ1,0 = σ, then

f(ρ̂3) −→
α

1− β
f(σ) = f(ρ3,0),

and, by (B.34), (B.33), we have ρ̂3 → τ(ρ3,0). Then, we are able to create on the third road

a wave with strength bounded away from zero using an arbitrarily small wave on the first

one.
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